当前位置: 首页 > 文档 > 教案 > 等边三角形第一课时教案人教版

等边三角形第一课时教案人教版

2016-01-11 08:22:00 教案 来源:http://www.chinazhaokao.com 浏览:

导读: 等边三角形第一课时教案人教版篇一:山东省淄博市高青县第三中学八年级数学上册 13 3 2 等边三角形(第1课时)教案 (新版)新人教版 ...

本文是中国招生考试网(www.chinazhaokao.com)教案频道为大家整理的《等边三角形第一课时教案人教版》,供大家学习参考。

等边三角形第一课时教案人教版篇一:山东省淄博市高青县第三中学八年级数学上册 13.3.2 等边三角形(第1课时)教案 (新版)新人教版

13.3.2 等边三角形

(二)能力训练要求

1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.

2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点. (三)情感与价值观要求

1.积极参与数学学习活动,对数学有好奇心和求知欲.

2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.

重点难点

重点:等边三角形判定定理的发现与证明. 难点:1.等边三角形判定定理的发现与证明. 2.引导学生全面、周到地思考问题. 教学方法 探索发现法. 教具准备

多媒体课件,投影仪. 教学过程

Ⅰ.提出问题,创设情境

[师]我们在前两节课研究证明了等腰三角形的性质和判定定理,我们知道,在等腰三角形中有一种特殊的等腰三角形──三条边都相等的三角形,叫等边三角形.回答下面的三个问题.

(演示课件

1.把等腰三角形的性质用到等边三角形,能得到什么结论? 2.一个三角形满足什么条件就是等边三角形?

3.你认为有一个角等于60°的等腰三角形是等边三角形吗?•你能证明你的结论吗?把你的证明思路与同伴交流.

(教师应给学生自主探索、思考的时间)

[生甲]由等边对等角的性质可知,等边三角形的三个角相等,又由三角形三内角和定理可知,等边三角形的三个角相等,并且都等于60°. [生乙]等腰三角形已有两边分别相等,所以我认为只要腰和底边相等,等腰三角形就是等边三角形了.

[生丙]等边三角形的三个内角都相等,且分别都等于60°,我认为等腰三角形的三个内角都等于60°,也就是说这个等腰三角形就是等边三角形了.

(此时,部分同学同意此生看法,部分同学不同意此生看法,引起激烈的争论,•教师可让同学代表发表自己的看法)

[生丁]我不同意这个同学的看法,•因为任何一个三角形满足这个条件都是等边三角形.根据等角对等边,三个内角都是60°,所以它们所对的边一定相等,但这一问题中“已

知是等腰三角形,满足什么条件时便是等边三角形”,•我觉得他给的条件太多,浪费! [师]给三个角都是60°,这个条件确实有点浪费,那么给什么条件不浪费呢?•下面同学们可以在小组内交流自己的看法. Ⅱ.导入新课

探索等腰三角形成等边三角形的条件.

[生]如果等腰三角形的顶角是60°,那么这个三角形是等边三角形. [师]你能给大家陈述一下理由吗?

[生]根据三角形的内角和定理,顶角是60°,等腰三角形的两个底角的和就是180°- 60°=120°,再根据等腰三角形两个底角是相等的,•所以每个底角分别是120°÷2=60°,则三个内角分别相等,根据等角对等边,•则此时等腰三角形的三条边是相等的,即顶角为60°的等腰三角形为等边三角形.

[生]等腰三角形的底角是60°,那么这个三角形也是等边三角形,同样根据三角形内角和定理和等角对等边、等边对等角的性质.

[师]从同学们自主探索和讨论的结果可以发现:•在等腰三角形中,•不论底角是60°,还是顶角是60°,那么这个等腰三角形都是等边三角形.•你能用更简洁的语言描述这个结论吗?

[生]有一个角是60°的等腰三角形是等边三角形.

(这个结论的证明对学生来说可能有一定的难点,难点是意识到分别讨论60°的角是底角和顶角两种情况.这是一种分类讨论的思想,教师要关注学生得出证明思路的过程,引导学生全面、周到地思考问题,并有意识地向学生渗透分类的思想方法) [师]你在与同伴的交流过程中,发现了什么或受到了何种启示?

[生]我发现我的证明过程没有意识到“有一个角是60°”,在等腰三角形中有两种情况:

(1)这个角是底角;(2)这个角是顶角.也就是说我们思考问题要全面、周到. [师]我们来看有多少同学意识到分别讨论60°的角是底角和顶角的情况,•我们鼓掌表示对他们的鼓励.

今天,我们探索、发现并证明了等边三角形的判定定理;有一个角等于60°的等腰三角形是等边三角形,我们在证明这个定理的过程中,还得出了三角形为等边三角形的条件,是什么呢?

A [生]三个角都相等的三角形是等边三角形.

[师]下面就请同学们来证明这个结论. (投影仪演示学生证明过程)

已知:如图,在△ABC中,∠A=∠B=∠C. 求证:△ABC是等边三角形.

B

证明:∵∠A=∠B, ∴BC=AC(等角对等边). 又∵∠A=∠C,

∴BC=AC(等角对等边).

∴AB=BC=AC,即△ABC是等边三角形.

[师]这样,我们由等腰三角形的性质和判定方法就可以得到. (演示课件)

等边三角形的三个内角都相等,并且每一个角都等于60°; 三个角都相等的三角形是等边三角形.

有一个角是60°的等腰三角形是等边三角形.

[师]有了上述结论,我们来学习下面的例题,体会上述定理. (演示课件)

[例4]如图,课外兴趣小组在一次测量活动中,测得∠APB= 60°,AP=BP=200m,•他们便得出一个结论:A、B之间距离不少于200m,他们的结论对吗?

分析:我们从该问题中抽象出△APB,由已知条件∠APB=60°且AP=BP,•由本节课探究结论知△APB为等边三角形. 解:在△APB中,AP=BP,∠APB=60°, 所以∠PAB=∠PBA=

11

(180°-∠APB)=(180°-60°)=60°. 22

于是∠PAB=∠PBA=∠APB.

从而△APB为等边三角形,AB的长是200m,•由此可以得出兴趣小组的结论是正确的. Ⅲ.随堂练习

(一)课本练习 1、2.

1.等边三角形是轴对称图形吗?它有几条对称轴?它们分别是什么线段?

答案:等边三角形是轴对称图形,它有三条对称轴,它们分别是三个角的平分线(或是三条边上的中线或三条边上的高线).

2.如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,•图中有哪些与BD相等的线段?

AEF

C

答案:BD=DC=BE=EA=CF=FA=DE=DF. (二)补充练习

如图,△ABC是等边三角形,∠B和∠C的平分线相交于D,BD、CD•的垂直平分线分别交BC于E、F,求证:BE=CF.

A

D

EC

证明:连接DE,DF,则BE=DE,DF=CF.

由△ABC是等边三角形,BD平分∠ABC,得∠1=30°,故∠2=30°,从而∠DEF=60°. 同理∠DFE=60°,

故△DEF是等边三角形. 所以DE=DF,因而BE=CF. Ⅳ.课时小结

这节课,我们自主探索、思考了等腰三角形成为等边三角形的条件,•并对这个结论的证明有意识地渗透分类讨论的思想方法.这节课我们学的定理非常重要,在我们今后的学习中起着非常重要的作用. Ⅴ.活动与探究

A探究:如图,在等边三角形ABC的边AB,AC上分别截取

AD=AE.△ADE是等边三角形吗?试说明理由.

过程:通过分析、讨论,让学生进一步了解等边三角形的性

ED质及判定.

结果:

已知:三角形ABC为等边三角形.D,E为边AB,AC上两点,且AD=AE.判断△ADE

相关热词搜索:等边三角形第一课时 人教版分式第一课时 菩萨兵第一课时教案

最新推荐教案

更多
1、“等边三角形第一课时教案人教版”由中国招生考试网网友提供,版权所有,转载请注明出处。
2、欢迎参与中国招生考试网投稿,获积分奖励,兑换精美礼品。
3、"等边三角形第一课时教案人教版" 地址:http://www.chinazhaokao.com/wendang/jiaoan/123020.html,复制分享给你身边的朋友!
4、文章来源互联网,如有侵权,请及时联系我们,我们将在24小时内处理!