当前位置: 首页 > 文档 > 教案 > 等腰三角形教案北师大版

等腰三角形教案北师大版

2016-09-23 11:30:51 教案 来源:http://www.chinazhaokao.com 浏览:

导读: 等腰三角形教案北师大版(共5篇)...

以下是中国招生考试网www.chinazhaokao.com为大家整理的《等腰三角形教案北师大版》,希望大家能够喜欢!更多资源请搜索教案频道与你分享!

等腰三角形教案北师大版(一)
北师大版八年级下册1.1等腰三角形教案

第一章 三角形的证明

1.等腰三角形(一)

一、学生知识状况分析

在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题,这些都为证明本节有关命题做了很好的铺垫。

二、教学任务分析 本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、公理证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:

1.知识目标:

理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理; 在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理; 熟悉证明的基本步骤和书写格式。

2.能力目标:

经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力; 鼓励学生在交流探索中发现证明方法的多样性,提高逻辑思维水平;

3.情感与价值目标

启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系;

培养学生合作交流的能力,以及独立思考的良好学习习惯.

4.教学重、难点

重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法; 难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。

三、教学过程分析

学生课前准备:一张等腰三角形纸片(供上课折叠实验用);

教师课前准备:制作好的几何画板课件.

第一环节:回顾旧知 导出公理

活动内容:提请学生回忆并整理已经学过的8条基本事实中的5条:

1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

2.两条平行线被第三条直线所截,同位角相等;

3.两边夹角对应相等的两个三角形全等(SAS);

4.两角及其夹边对应相等的两个三角形全等(ASA);

5.三边对应相等的两个三角形全等(SSS);

在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。

活动目的:经过一个暑假,学生难免有所遗忘,因此,在第一课时,回顾有关内容,既是对前面学习内容的一个简单梳理,也为后续有关证明做了知识准备;证明这个推论,可以让学生熟悉证明的基本要求和步骤,为后面的其他证明做好准备。

活动效果与注意事项:由于有了前面的铺垫,学生一般都能得到该推论的证明思路,但由于有了一个暑假的遗忘,可能部分学生的表述未必严谨、规范,教学中注意提请学生分析条件和结论,画出简图,写出已知和求证,并规范地写出证明过程。

具体证明如下:

已知:如图,∠A=∠D,∠B=∠E,BC=EF.

求证:△ABC≌△DEF.

证明:∵∠A=∠D,∠B=∠E(已知), 又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),

∴∠C=180°-(∠A+∠B),

∠F=180°-(∠D+∠E),

∴∠C=∠F(等量代换)。

又BC=EF(已知),

∴△ABC≌△DEF(ASA)。 BA

第二环节:折纸活动 探索新知

活动内容:在提问:“等腰三角形有哪些性质?以前是如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明吗?”的基础上,让学生经历这些定理的活动验证和证明过程。具体操作中,可以让学生先独自折纸观察、探索并写出等腰三角形的性质,然后再以六人为小组进行交流,互相弥补不足。

B

→ B

B活动目的:通过折纸活动过程,获得有关命题的证明思路,并通过进一步的整理,再次感受证明是探索的自然延伸和发展,熟悉证明的基本步骤和书写格式。

活动效果与注意事项:由于有了教师引导下学生的活动,以及具体的折纸操作,学生一般都能得到有关等腰三角形的性质定理,当然,可能部分学生得到的定理并不全面,在学生小组的交流中,通过同伴的互相补充,一般都可以得到所有性质定理。当然,在教学过程中,教师应注意小组的巡视,提醒学生思考多种证明思路,思考不同的辅助线之间的关系从而得到“三线合一”。

第三环节:明晰结论和证明过程

活动内容:在学生小组合作的基础上,教师通过分析、提问,和学生一起完成以上两个个性质定理的证明,注意最好让两至三个学生板演证明,其余学生挑选其一证明.其后,教师通过课件汇总各小组的结果以及具体证明方法,给学生明晰证明过程。

(1)等腰三角形的两个底角相等;

(2)等腰三角形顶角的平分线、底边中线、底边上高三条线重合

活动目的:和学生一起完成性质定理的证明,可以让学生自主经历命题的证明过程;明晰证明过程,意图给学生明晰一定的规范,起到一种引领作用;活动2,则是前面命题的直接推论,力图让学生形成拓广命题的意识,同时也是一个很好的巩固练习。

第四环节:随堂练习 巩固新知

活动内容:学生自主完成P4第2题:如图(图略),在△ABD中, AC⊥BD,垂足为C,,AC=BC=CD,

(1)求证:△ABD是等腰三角形;

(2)求∠BAD的度数。

活动目的:巩固全等三角形判定公理的应用,复习等腰三角形“等边对等角”的用法。

第五环节:课堂小结

活动内容:让学生畅谈收获,包括具体结论以及其中的思想方法等。

活动目的:形成及时总结语反思的意识与习惯,提高学生能力。

活动效果与注意事项:教师注意对学生的感想进行适当的引导,并在学生交流的基础上,明晰部分收获供学生共享,如:

1、具体有关性质定理;

2、通过折纸活动对获得的定理给予了严格的证明,为今后解决有关等腰三角形的问题提供了丰富的理论依据.

3、体会了证明一个命题的严格的要求,体会了证明的必要性.

第六环节:布置作业

P4习题1.1 1-6.

四、教学反思

本节关注学生已有活动经验的回顾过程,关注了 “探索-发现-猜想-证明”的活动过程,关注了学生自主探究过程,学生学习的主体性发挥较好,应该说取得了较好的教学效果。当然,在具体活动中,如何在学生活动与规范表达之间形成一个恰当的平衡,具体各部分时间比例的分配可能还需要根据班级学生具体状况进行适度的调整。

等腰三角形教案北师大版(二)
北师大八年级下册1.1等腰三角形(四)教学设计

第一章 三角形的证明

1. 等腰三角形(四)

一、学生知识状况分析

在前两节课,学生已经经历了独立探索发现定理的过程,并能基本规范地证明相关命题,这些都为本节课进一步探索发现相关定理提供了较好的知识基础和活动经验基础。

二、教学任务分析

本节课,学生将探究等边三角形判定定理和含30°角的直角三角形的性质定理,应该说,这两个定理的证明和探索相对而言,并不复杂,更多的是前面定理的直接运用,因此,本节课可以更多地让学生自主探索。但第一个定理证明中,需要分类讨论,因此注意揭示其中的分类思想;第2个定理结论比较特殊,直接从定理条件出发,学生一般难能得到这个结论,因此,教科书中设计了一个学生活动,在活动的基础上“无意”中发现了其特殊的结论,这实际上也是一种数学发现的方法,因此也应注意让学生体会。为此,确定本节课的教学目标:

1.知识目标

理解等边三角形的判别条件及其证明,理解含有30º角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。

2.能力目标

①经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.

②经历实际操作,探索含有30º角的直角三角形性质及其推理证明过程,发展合情推理能力和初步的演绎推理的能力;

③在具体问题的证明过程中,有意识地渗透分类讨论、逆向思维的思想,提高学生的能力。

3.情感与价值观要求

①积极参与数学学习活动,对数学有好奇心和求知欲.

②在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.

教学重点

①等边三角形判定定理的发现与证明.

②含30°角的直角三角形的性质定理的发现与证明.

4.教学难点

①含30°角的直角三角形性质定理的探索与证明.

②引导学生全面、周到地思考问题.

三、教学过程分析

学具准备:两个带30度角的三角板。

本节课设计了六个教学环节:第二环节:自主探索;第三环节:实际操作 提出问题;第四环节:变式训练 巩固新知;第五环节:畅谈收获 课时小结;第六环节:布置作业。

第一环节:提问问题,引入新课

活动内容:教师回顾前面等腰三角形的性质和判定定理的基础上,直接提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等腰三角形呢?从而引入新课。

活动目的:开门见山,引入新课,同时回顾,也为后续探索提供了铺垫。

活动效果:在老师的引导下,一般学生都能得出等边三角形的性质;对于等边三角形的判别,学生可能会出现多种情况,如直接从等边三角形性质出发,当然也可能有学生考虑分步进行,现确定它是等腰三角形,再增补条件,确定它是等边三角形。这是教师可以适时提出问题:如果已知一个三角形是等边三角形的基础上,如何确定它是等边三角形呢?

下面是实际教学中的部分师生活动实况:

[生]等腰三角形已经有两边分别相等,所以我认为只要腰和底相等,等腰三角形就成了等边三角形.

[生]等边三角形的三个内角都相等,且分别都等于60°.我认为等腰三角形的三个内角都等于60°,等腰三角形就是等边三角形了.

(此时,部分同学同意此生的看法,部分同学不同意此生的看法,引起激烈地争论.教师可让同学代表充分发表自己的看法.)

[生]我不同意这位同学的看法.因为任何一个三角形满足这个条件都是等边三角形.根据等角对等边,三个内角都是60°,所以它们所对的边一定相等.但这一问题中“已知是等

腰三角形,满足什么条件时便是等边三角形”,我觉得他给的条件太多,浪费!

[师]给三个角都是60°,这个条件的确有点浪费,那么给什么条件不浪费呢?下面同学们可在小组内交流自己的看法.

(2)你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.

(教师应给学生自主探索、思考的时间)

第二环节:自主探索

活动内容:学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件,并引导学生总结出下表:

活动目的:经历定理的探究过程,即明确有关定理,同时提高学生的自主探究能力。 活动注意事项与效果:由于有了第1环节的铺垫,学生多能探究出:

顶角是60°的等腰三角形是等边三角形;

底角是60°的等腰三角形是等边三角形;

三个角都相等的三角形是等边三角形;

三条边都相等的三角形是等边三角形。

对于前两个定理的形式相近,教师可以进一步提出要求:能否用更简捷的语言描述这个结论吗?从而引导学生得出:有一个角是60°的等腰三角形是等边三角形。

在学生得出这些结论的基础上,教师注意引导学生说明道理,给出证明的思路,选择部分命题,给与严格的证明,由于“有一个角是60°的等腰三角形是等边三角形”的证明需要分类讨论,因此,可以以此问题作为对学生证明的要求,并与同伴交流证明思路.并要求学生

思考证明中的注意事项,从而点明其中的分类思想,提请学生注意:思考问题要全面、周到.

第三环节:实际操作 提出问题

活动内容:教师直接提出问题:我们还学习过直角三角形,今天我们研究一个特殊的直角三角形:含30°角的直角三角形。拿出三角板,做一做:

用含30°角的两个三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?

在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由.

活动目的:让学生经历拼摆三

角尺的活动,发现结论:在直角三

角形中,如果一个锐角等于30°,

那么它所对的直角边等于斜边的一

半.

活动注意事项与效果:学生一

般可以得出下面两种图形:其中第

11个图形是等边三角形,对于该图学生也可以得出BD=2 AB,从而得出:在直角三角形中,

如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

注意,教学过程中,教师应注意引导学生说明为什么所得到的三角形是等边三角形。具体的说明过程可以如下:

方法1:因为△ABD≌ACD,所以AB=AC.又因为Rt△ABD中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.

【等腰三角形教案北师大版】

方法2:图(1)中,∠B=∠C=60,∠BAC=∠BAD+∠CAD=30°+30°=60°,所以∠B=∠C=∠BAC=60°,即△ABC是等边三角形.

如果学生不能很快得出30度所对直角边是斜边一半,教师可以在图上标出各个字母,并要求学生思考其中哪些线段直接存在倍数关系,并在将三角板分开,思考从中可以得到什么结论。然后在学生得到该结论的基础上,再证明该定理。

定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°.

1求证:BC=2AB.

分析:从三角尺的拼摆过程中得到启发,延长BC至D,使CD=BC,连接AD.

AABD(1)B(2)

证明:在△ABC中,∠ACB=90°,∠BAC=30°∠B=60°.

延长BC至D,使CD=BC,连接AD(如图所示).

∵∠ACB=90°∴∠ACB=90°

∵AC=AC,∴△ABC≌△ADC(SAS).

∴AB=AD(全等三角形的对应边相等).

∴△ABD是等边三角形(有一个角是60°的等腰三角形是

等边三角形).

11∴BC=2BD=2AB.

第四环节:变式训练 巩固新知

活动1:直接提请学生思考刚才命题的逆命题:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°吗?如果是,请你证明它.

在师生分析的基础上,给出证明:

1已知:如图,在Rt△ABC中,∠C=90°,BC=2 AB.

求证:∠BAC=30°

证明:延长BC至D,使CD=BC,连接AD.

∵∠ACB=90°,∴∠ACD=90°.

又∵AC=AC.

∴△ACB≌△ACD(SAS).

∴AB=AD.

1∵CD=BC,∴BC=2 BD.

1又∵BC=2AB,∴AB=BD.

∴AB=AD=BD,

即△ABD是等边三角形.

∴∠B=60°.在Rt△ABC中,∠BAC=30°.

注意事项:该命题的证明中辅助线较复杂,但恰有前面原命题探究活动过程的铺垫,可以给学生一些启示,因此,教学中,教师可以引导学生思考:从前面定理证明的辅助线的作法中能否得到启示?

活动2 :呈现例题,在师生分析的基础上,运用所学的新定理解答例题。

等腰三角形教案北师大版(三)
北师大版(2012教材)初中八下1.1.1等腰三角形教案

北师大版(2012教材)1.1.1等腰三角形教案

【教学目标】 知识与技能

1. 了解作为证明基础的几条公理的内容.

2. 使学生经历“探索—— 发现——猜想——证明”的过程,学会综合法证明等腰三角形的有关性质定理. 过程与方法

让学生学会分析几何证明题的思路,并掌握证明的基本步骤和书写格式. 情感态度与价值观

经历用用辅助线的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系. 行为与创新

培养学生积极参与、合作交流的意识.在等腰三角形的性质及推论的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气. 【教学重难点】

重点

等腰三角形的性质及推论. 难点

命题书写的格式. 【课前准备】 教师:课件 学生:练习本. 【教学过程】

我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论.

同学们和我一起来回忆上学期学过的公理

 本套教材选用如下命题作为公理 :

 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;  2.两条平行线被第三条直线所截,同位角相等;

 3.两边夹角对应相等的两个三角形全等; (SAS)  4.两角及其夹边对应相等的两个三角形全等; (ASA)  5.三边对应相等的两个三角形全等; (SSS)  6.全等三角形的对应边相等,对应角相等. 由公理5、3、4、6可容易证明下面的推论:

推论 两角及其中一角的对边对应相等的两个三角形全等.(AAS)

证明过程:

B

C

E

F

已知:∠A=∠D,∠B=∠E,BC=EF 求证:△ABC≌△DEF 证明:∵∠A+∠B+∠C=180°,

∠D+∠E+∠F=180° (三角形内角和等于180°)

∴∠C=180°-(∠A+∠B) ∠F=180°-(∠D+∠E) 又∵∠A=∠D,∠B=∠E(已知) ∴∠C=∠F 又∵BC=EF(已知) ∴△ABC≌△DEF(ASA)

(这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备.) 议一议:

(1)还记得我们探索过的等腰三角形的性质吗?(教师提出问题,并利用等腰三角形纸片帮议助学生回忆.学生充分讨论问题1,借助等腰三角形纸片回忆有关性质.) (2)你能利用已有的公理和定理证明这些结论吗?

(等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明.) 定理:等腰三角形的两个底角相等. 这一定理可以简单叙述为:等边对等角. 已知:如图,在ABC中,AB=AC 求证:∠B=∠C

D

C

(引导学生证明定理“等腰三角形的两个底角相等”,重点引导学生做辅助线,将等腰三角形分成两个全等的三角形: 我们刚才利用折叠的方法说明了这两个底角相等.实际上,折痕将等腰三角形分成了两个全等三角形.能否通过作一条线段,得到两个全等的三角形,从而证明这两个底角相等呢?) 证明:取BC的中点D,连接AD. ∵AB=AC,BD=CD,AD=AD, ∴△ABC△≌△ACD (SSS)

∴∠B=∠C (全等三角形的对应边角相等)

(让同学们通过探索、合作交流找出其他的证明方法.做∠BAC的平分线,交BC边于D;过点A做AD⊥BC..学生指出该定理的条件和结论,写出已知、求证,画出图形,并选择一种方法进行证明.) 想一想:

在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?

(应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,讨论图中存在的相等的线段和相等的角,发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”.)【等腰三角形教案北师大版】

推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.

【等腰三角形教案北师大版】

随堂练习:

做教科书第4页第1,2题.(引导学生分析证明方法,学生动手证明,写出证明过程.) 6、小结:

这节课你学会了什么?有何收获? 7、作业:1、P5第1、2、3、4题 课时作业设计

1. 填空题:

⑴如图1-1,在△ABC中,AB=AC,AD是高

.

A

B

D

图1-1

C

①若∠B=65°,则∠BAD=________.

②若BC=8cm, 则BD=______cm. ③若△ABC的周长为36cm,AD=10cm,则△ABD的周长为_________. ⑵如图1-2,AB=AC,AD=AE,∠BAD=28°则∠EDC=___________.

A

E

B

D

图1-2

C

2. 证明题:

(1)如图1-3,直线EF截∠MAN的两边于B,C,且AB=AC. 求证:∠1=∠2.

A

1M

C2N

(2)如图1-4,点D、E在△ABC的边BC上,AB=AC,AD=AE. 求证:∠BAD=∠EAC.【等腰三角形教案北师大版】

A

B

D

E

C

参考答案:

1. (1) ①25°②4cm③28cm ⑵14°

2. (1)略;(2)提示:过A点A作AF⊥BC,或取BC边的中点或作∠DAE的角平分线.

等腰三角形教案北师大版(四)
北师大版八年级数学下:第一章 等腰三角形 (第 1课时)教案

等腰三角形 (第 1课时)

【学习目标】

课标要求:

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定

理和判定定理。

3、结合实例体会反证法的含义。

目标达成:【等腰三角形教案北师大版】

1,等腰三角形的关性质定理和判定定理。

2,能够用综合法证明等腰三角形的关性质定理和判定定

学习流程:

【课前展示】

1、证明等腰三角形性质

2、证明推论AAS

【创境激趣】

让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。 【自学导航】

1、 议一议1、(1)(2)

2、等腰三角形的判定

想一想:叙述并阐释反证法的含义,让学生了解。

【合作探究】

1、等腰三角形的性质

(1)等腰三角形的两个底角相等;

(2)等腰三角形顶角的平分线、底边中线、底边上高三条线重合

2、等边三角形三个内角都相等并且每个内角都等于60°. 【展示提升】

典例分析 知识迁移

1、 如图(图略),在△ABD中,C是BD上的一点,且AC⊥BD,AC=BC=CD,

(1)求证:△ABD是等腰三角形;

(2)求∠BAD的度数。

【强化训练】

1、、如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于多少?

1

A

2、△ABC中,AB=AC,若角A=角B,求其它的度数

【归纳总结 】

1、 等腰三角形的性质三角形

2、全等的判定

【板书设计】

1.1 等腰三角形(1)

三角形全等的判定 等腰三角形的性质

教学反思】

【等腰三角形教案北师大版】

本节关注学生已有活动经验的回顾过程,关注了 “探索-发现-猜想-证明”的活动过程,关注了学生自主探究过程,学生学习的主体性发挥较好,应该说取得了较好的教学效果。当然,在具体活动中,如何在学生活动与规范表达之间形成一个恰当的平衡,具体各部分时间比例的分配可能还需要根据班级学生具体状况进行适度的调整。

BF

2

等腰三角形教案北师大版(五)
北师大版八年级下册数学第一章 三角形的证明第一节《等腰三角形(1)》优秀教学设计

1.等腰三角形(一)

一、学生知识状况分析

在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题,这些都为证明本节有关命题做了很好的铺垫。

二、教学任务分析

本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、公理证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:

1.知识目标:

理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;

在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;

熟悉证明的基本步骤和书写格式。

2.能力目标:

经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;

鼓励学生在交流探索中发现证明方法的多样性,提高逻辑思维水平;

3.情感与价值目标

启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系;

培养学生合作交流的能力,以及独立思考的良好学习习惯.

4.教学重、难点

重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和

方法;

难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。

三、教学过程分析

学生课前准备:一张等腰三角形纸片(供上课折叠实验用);

教师课前准备:制作好的几何画板课件.

本节课设计了六个教学环节:第一环节:回顾旧知 导出公理;第二环节:折纸活动 探索新知;第三环节:明晰结论和证明过程;第四环节:随堂练习 巩固新知;第五环节:课堂小结;第六环节:布置作业。

第一环节:回顾旧知 导出公理

活动内容:提请学生回忆并整理已经学过的8条基本事实中的5条:

1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

2.两条平行线被第三条直线所截,同位角相等;

3.两边夹角对应相等的两个三角形全等(SAS);

4.两角及其夹边对应相等的两个三角形全等(ASA);

5.三边对应相等的两个三角形全等(SSS);

在此基础上回忆全等三角形的另一判别条件:

1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;

2.回忆全等三角形的性质。

活动目的:经过一个暑假,学生难免有所遗忘,因此,在第一课时,回顾有关内容,既是对前面学习内容的一个简单梳理,也为后续有关证明做了知识准备;证明这个推论,可以让学生熟悉证明的基本要求和步骤,为后面的其他证明做好准备。

活动效果与注意事项:由于有了前面的铺垫,学生一般都能得到该推论的证明思路,但由于有了一个暑假的遗忘,可能部分学生的表述未必严谨、规范,教学中注意提请学生分析条件和结论,画出简图,写出已知和求证,并规范地写出

证明过程。具体证明如下:

已知:如图,∠A=∠D,∠B=∠E,BC=EF.

求证:△ABC≌△DEF.

证明:∵∠A=∠D,∠B=∠E(已知), BA

C又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°), ∴∠C=180°-(∠A+∠B),

∠F=180°-(∠D+∠E),

∴∠C=∠F(等量代换)。

又BC=EF(已知),

∴△ABC≌△DEF(ASA)。

第二环节:折纸活动 探索新知

活动内容:在提问:“等腰三角形有哪些性质?以前是如何探索这些性

质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明吗?”的基础上,让学生经历这些定理的活动验证和证明过程。具体操作中,可以让学生先独自折纸观察、探索并写出等腰三角形的性质,然后再以六人为小组进行交流,互相弥补不足。

B

→ B

→ B活动目的:通过折纸活动过程,获得有关命题的证明思路,并通过进一步的整理,再次感受证明是探索的自然延伸和发展,熟悉证明的基本步骤和书写格式。

活动效果与注意事项:由于有了教师引导下学生的活动,以及具体的折纸操作,学生一般都能得到有关等腰三角形的性质定理,当然,可能部分学生得到的定理并不全面,在学生小组的交流中,通过同伴的互相补充,一般都可以得到所有性质定理。当然,在教学过程中,教师应注意小组的巡视,提醒学生思考多种证明思路,思考不同的辅助线之间的关系从而得到“三线合一”。

以上就是中国招生考试网http://www.chinazhaokao.com/带给大家的精彩教案资源。想要了解更多《等腰三角形教案北师大版》的朋友可以持续关注中国招生考试网,我们将会为你奉上最全最新鲜的教案内容哦! 中国招生考试网,因你而精彩。

相关热词搜索:北师大三角形面积教案 北师大版三角形内角和

最新推荐教案

更多
1、“等腰三角形教案北师大版”由中国招生考试网网友提供,版权所有,转载请注明出处。
2、欢迎参与中国招生考试网投稿,获积分奖励,兑换精美礼品。
3、"等腰三角形教案北师大版" 地址:http://www.chinazhaokao.com/wendang/jiaoan/647723.html,复制分享给你身边的朋友!
4、文章来源互联网,如有侵权,请及时联系我们,我们将在24小时内处理!