当前位置: 首页 > 实用文档 > 工作总结 > 物理学史总结

物理学史总结

2016-08-18 11:22:24 成考报名 来源:http://www.chinazhaokao.com 浏览:

导读: 物理学史总结(共6篇)高中最全的物理学史总结新课标高考:高中物理学史汇总,本专题肯定会在2013年高考理综物理试题中出现,一般小题形式出现。大家一定要注意了解这方面的内容。这个比较简单,背熟就可以了! I 必考部分:(必修1、必修2、选修3-1、3-2)一、力学:1.1638年,意大利物理学家伽利略在《两种新科学的对...

以下是中国招生考试网www.chinazhaokao.com为大家整理的《物理学史总结》,希望大家能够喜欢!更多资源请搜索成考报名频道与你分享!

高中最全的物理学史总结
物理学史总结 第一篇

新课标高考:高中物理学史汇总,本专题肯定会在2013年高考理综物理试题中出现,一般小题形式出现。大家一定要注意了解这方面的内容。这个比较简单,背熟就可以了! I.必考部分:(必修1、必修2、选修3-1、3-2)

一、力学:

1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快。并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的)。

2.1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。

3.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即

牛顿三大运动定律)。

4.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去。得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5.英国物理学家胡克对物理学的贡献:胡克定律 。经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)

6.1638年,伽利略在《两种新科学的对话》一书中,运用观察 ——假设——数学推理的方法,详细研究了抛体运动。

7.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表。而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

8.17世纪,德国天文学家开普勒提出开普勒三大定律。

9.牛顿于 1687年正式发表万有引力定律 。1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量。

10.1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星。1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

11.我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同。但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比)。俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。

12.1957年10月,苏联发射第一颗人造地球卫星。1961年4月,世界第一艘载人宇宙飞船 “东方1号”带着尤里加加林第一次踏入太空。

13.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

二、电磁学:

13.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律 --库仑定律,并测出了静电力常量k的值。

14.1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

15.1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

16.1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

17.1826年德国物理学家欧姆(1787~1854)通过实验得出欧姆定律。

18.1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象--超导现象。

19.19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳--楞次定律。

20.1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

21.法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说。并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

22.荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹

力)的观点。

23.英国物理学家汤姆孙发现电子,并指出:阴极射线是高速运动的电子流。

24.汤姆孙的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。 25.1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒

子。最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同 。

但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。

26.1831年,英国物理学家法拉第发现了由磁场产生电流的条件和规律 ——电磁感应定律。

27.1834年,俄国物理学家楞次发表确定感应电流方向的定律--楞次定律。 28.1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。

Ⅱ.选考部分:(选修3-3、3-4、3-5)

三、热学(3-3选考):

29.1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象--布朗运动。

30.19世纪中叶,由德国医生迈尔 。英国物理学家焦尔。德国学者亥姆霍兹最后确定能量守恒定律。

31.1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。

32.1848年,开尔文提出热力学温标,指出绝对零度( -273.15℃)是温度的下限。热力学温标与摄氏温度转换关系为T=t+273.15 K。

热力学第三定律:热力学零度不可达到。

四、波动学、光学、相对论(3-4选考):

33.17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。 34.1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律--惠更斯原理。

35.奥地利物理学家多普勒(1803~1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象--多普勒效应(相互接近,f增大。相互远离,f减少)。

36.1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波。

37.1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。

38.1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

39.1800年,英国物理学家赫歇耳发现红外线。

1801年,德国物理学家里特发现紫外线。

1895年,德国物理学家伦琴发现x射线(伦琴射线),并为他夫人的手拍下世界上第一张x射线的人体照片。

40.1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律--折射定律。 41.1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。

42.1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射--泊松亮斑。

43.1864年,英国物理学家麦克斯韦预言了电磁波的存在,并指出光是一种电磁波。

1887年,赫兹用实验证实了电磁波的存在,光是一种电磁波。

44.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

①相对性原理--不同的惯性参考系中,一切物理规律都是相同的。

②光速不变原理--不同的惯性参考系中,光在真空中的速度一定是c不变。

45.爱因斯坦还提出了相对论中的一个重要结论——质能方程式E=mc2。

46.公元前 468~前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播。影的形成。光的反射。平面镜和球面镜成像等现象,为世界上最早的光学著作。 47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)

48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒。另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。

49.物理学晴朗天空上的两朵乌云:

①迈克逊-莫雷实验一相对论(高速运动世界);

②热辐射实验一一量子论(微观世界)。

50.19世纪和20世纪之交,物理学的三大发现:x射线的发现,电子的发现,放射性 同

位素的发现。

51.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

①相对性原理--不同的惯性参考系中,一切物理规律都是相同的。

②光速不变原理--不同的惯性参考系中,光在真空中的速度一定是c不变。

52.1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子。

53.激光--被誉为20世纪的“世纪之光”。

五、动量、波粒二象性、原子物理(3-5选考):

54.1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界。受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。

55.1922年,美国物理学家康普顿在研究石墨中的电子对x射线的散射时--康普顿效应,证实了光的粒子性(说明动量守恒定律和能量守恒定律同时适用于微观粒子)。 56.1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

57.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性。

58.1927年美。英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。【物理学史总结】

59.1858年,德国科学家普里克发现了一种奇妙的射线--阴极射线(高速运动的电子流)。

60.1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。

61.1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

62.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。

63.1909~1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10m~15m。1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。

64.1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。

65.1913年,丹麦物理学家波尔最先得出氢原子能级表达式。

66.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结

构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ 射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。

67.1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素--钋(Po)镭(Ra)。

68.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。

69.1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。

70.1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。

71.1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。

72.1942年,在费米。西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、中子减速剂、水泥防护层、热交换器等组成)。

73.1952年,美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

74.1932年发现了正电子,1964年提出夸克模型。

粒子分三大类:

媒介子——传递各种相互作用的粒子,如:光子。

轻子——不参与强相互作用的粒子,如:电子。中微子。

强子——参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷。

2015年高考物理学史总结(归纳整理版)
物理学史总结 第二篇

2015年高考物理学史总结

1、伽利略

(1)通过理想实验推翻了亚里士多德“力是维持运动的原因”的观点

(2)推翻了亚里士多德“重的物体比轻物体下落得快”的观点

2、开普勒:提出开普勒行星运动三定律;

3、牛顿

(1)提出了三条运动定律。

(2)发现表万有引力定律;

4、卡文迪许:利用扭秤装置比较准确地测出了引力常量

5、爱因斯坦

(1)提出的狭义相对论(经典力学不适用于微观粒子和高速运动物体。)

(2)提出光子说,成功地解释了光电效应规律。

(3)提出质能方程E=mC2,为核能利用提出理论基础

6、库仑:利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。

7、焦耳和楞次

先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。

8、奥斯特

电流可以使周围的磁针偏转的效应,称为电流的磁效应。

9、安培:研究了电流在磁场中受力的规律

10、洛仑兹:提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

11、法拉第

(1)发现了由磁场产生电流的条件和规律——电磁感应现象;

(2)提出电荷周围有电场,提出可用电场描述电场

12、楞次:确定感应电流方向的定律。

13、亨利:发现自感现象。

14、麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

15、赫兹:

(1)用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。

(2)证实了电磁理的存在。

16、普朗克

提出“能量量子假说”——解释物体热辐射(黑体辐射)规律电磁波的发射和吸收不是连续的,而是一份一份的

17玻尔:提出了原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱。

18、德布罗意:预言了实物粒子的波动性;

19、汤姆生

利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型(葡萄干布丁模型)。

20、卢瑟福

进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10-15 m。

21、卢瑟福:用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。

22、查德威克:在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成。

第二份

1.胡克:发现胡克定律(F弹=kx)

2.伽利略:给出匀变速的定义,S正比于t的平方;无论物体轻重如何,其自由下落快慢是相同;斜面实验,推断出物体不受外力将维持匀速直线运动,后由牛顿归纳为惯性定律;他开创了科学推论的方法。

3.牛顿:动力学奠基人,提出牛顿三大定律和万有引力定律,奠定了一牛顿定律为基础的经典力学。

4.开普勒:开普勒三大定律,奠定了万有引力定律的基础。

5.卡文迪许:扭秤装置测出万有引力常量。

6.布朗:“布朗运动”(花粉粒子在水中无规则运动)

7.焦耳:测定热功当量;为能的转化守恒定律的建立提供了基础;焦耳定律(电流通过导体发热)

8.开尔文:把-273摄氏度作为绝对零度。

9.库仑:利用库仑扭秤研究电荷作用,发现库仑定律。

10.密立根:油滴实验,测得基本电荷。

11.欧姆:把电流与水流作对比,引入电流强度、电动势、电阻,并确立它们关系。

12.奥斯特:发现了电流能产生磁场。

13.安培:分子电流假说,磁场能对电流产生作用。

14.汤姆生:研究阴极射线(不是他发现这种射线),发现电子,并测出比荷;提出枣糕模型(也叫葡萄干布丁模型)

15.劳伦斯:回旋加速器

16.法拉第:发现电磁感应;制成第一台发电机;提出电磁场、磁感线、电场线的概念

17.楞次:确定感应电流方向的楞次定律

18.麦克斯韦:提出完整的电磁场理论

19.赫兹:证实电磁波的存在;测得电磁波的速度为光速,证实光是一种电磁波【物理学史总结】

20.惠更斯:提出光的波动学;发明摆钟

21.托马斯?杨:观察光的干涉现象(双缝干涉)

22.伦琴:X射线

23.普朗克:提出量子理论

【物理学史总结】

24.爱因斯坦:提出光子理论和光电效应方程;相对论;质能方程

25.德布罗意:提出波粒二象性;提出物质波概念

26.卢瑟福:α粒子散射现象,提出原子核式结构;发现原子;首先进行人工核反应

27.玻尔:提出原子的玻尔理论

28.查德威克:发现中子

29.威尔逊:发明威尔逊云室

30.贝克勒尔:发现铀的天然放射现象

31.老居里夫妇:镭的发现者

32.小居里夫妇:用人工核转变获得放射性同位素

第三份

1.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。

2.1909年——1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。

3.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。 天然放射现象有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变的快慢(半衰期)与原子所处的物理和化学状态无关。

4.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。 预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。

5.1939年12月德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。1942年 在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

6.1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是利用强激光产生的高压照射小颗粒核燃料。

7.现代粒子物理:

1932年发现了正电子,1964年提出夸克模型;

【物理学史总结】

第四份

1、胡克:英国物理学家;发现了胡克定律(F弹=kx)

2、伽利略:意大利的闻名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。

3、牛顿:英国物理学家; 动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 高考物理知识点总结

6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。

7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。

8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。

9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。

10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。

11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。

12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。

13、安培:法国科学家;提出了闻名的分子电流假说。

14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。

15、劳伦斯:美国科学家;发明了“回旋加速器”使人类在获得高能粒子方面迈进了一步。 高考物理知识点总结

16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。

17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。

18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理

论。

19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证明了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。

20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。

21、托马斯?杨:英国物理学家;首先巧妙而简朴的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉)

22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。

23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。

24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。【物理学史总结】

25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。

26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。

27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。

28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。

29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。

30、贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始熟悉原子核结构是复杂的。

31、玛丽?居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者。

32、约里奥?居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素。

2015高中物理学史总结
物理学史总结 第三篇

第1篇:高中物理学史总结

一、力学

1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);

2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

7、17世纪,德国天文学家开普勒提出开普勒三大定律;

8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。

11、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。二、电磁学

12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。

13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。18世纪中叶,美国人富兰克林提出了正、负电荷的概念。1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。

19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。

22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。

23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)

24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。

26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。三、热学

27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。29、1848年开尔文提出热力学温标,指出绝对零度是温度的下限。

30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。

21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。四年后,帕斯卡的研究表明,大气压随高度增加而减小。1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。四、波动学

22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。

23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。

24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。五、光学

25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。

26、1801年,英国物理学家托马斯?杨成功地观察到了光的干涉现象。

27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。

28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。

30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

31、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。

32、激光——被誉为20世纪的“世纪之光”。六、波粒二象性

33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。

34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。

35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。

37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。七、相对论

38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验——量子论(微观世界);39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。狭义相对论的其他结论:①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。③相对论质量:物体运动时的质量大于静止时的质量。

41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。八、原子物理学

42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。

43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。

44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10-15m。

45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。

48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。

49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。

50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。

51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。

54、1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。

第2篇:2015届高考物理学史总结

一。力学中的物理学史

1、亚里士多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。

2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用著名的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了第一架观察天体的望远镜;第一次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。

3、1683年,英国科学家牛顿:总结三大运动定律、发现万有引力定律。另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。

4、1798年英国物理学家卡文迪许:利用扭秤装置比较准确地测出了万有引力常量G=6。67×11-11N·m2/kg2(微小形变放大思想)。

二。电、磁学中的物理学史

1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。

2、1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即欧姆定律。

3、1820年,丹麦物理学家奥斯特:电流可以使周围的磁针发生偏转,称为电流的磁效应。

4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。

5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。

6、1864年英国物理学家麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,并从理论上得出光速等于电磁波的速度,为光的电磁理论奠定了基础。

7、1888年德国物理学家赫兹:用莱顿瓶所做的实验证实了电磁波的存在并测定了电磁波的传播速度等于光速并率先发现“光电效应现象”。

四。光学中的物理学史

1、历史上关于光的本质有两种学说:一种是牛顿主张的微粒说——认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说——认为光是在空间传播的某种波。

2、1801年,英国物理学家托马斯·杨:通过“杨氏双缝干涉实验”观察到了光的干涉现象,证实了光的波动性。

3、1818年,观察到光的圆板衍射——泊松亮斑,证实了光的波动性。

4、1905年爱因斯坦:在德国物理学家赫兹首先发现“光电效应”实验的基础上提出了“光子说”,成功地解释了光电效应规律。

5、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。

6、1924年,法国物理学家德布罗意:预言了一切微观粒子包括电子、质子、和中子都具有波粒二象性。1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。

7、1800年,英国物理学家赫谢尔发现红外线。红外线具有明显的热效应。应用:红外遥感和红外高空摄影。

8、1801年,德国物理学家里特发现紫外线。紫外线具有明显的化学作用、荧光效应。应用:杀菌、消毒、黑光灯灭害虫。

9、1895年,德国物理学家伦琴:发现比紫外线频率还要高的电磁波——X射线(伦琴射线)。具有很强的穿透本领,能使荧光物质发出荧光,还能使照相底片感光。高速电子流射到任何固体上都能产生这种射线。

五、原子物理中的物理学史

1、1897年,英国物理学家汤姆生:利用阴极射线管发现了电子,说明原子可分、有复杂内部结构,并提出原子的枣糕模型。

2、1909年,英国物理学家卢瑟福为了验证汤姆生提出的原子结构模型做了著名的“α粒子散射实验”。并提出了核式结构学说。

3、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

4、1896年,法国物理学家贝克勒尔:发现天然放射现象,说明原子核也有复杂的内部结构即原子核也是可分的。之后居里夫人于1898年7月发现放射性元素钋(Po)同年12月又发现了镭(Ra)。

5、1909年-1911年,英国物理学家卢瑟福:用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。

6、1932年查德威克:在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成。

7、1934年,约里奥·居里夫妇:用粒子轰击铝箔时观察到正电子。反映方程。可见,正电子是由磷30衰变发射出来的。像磷30这种具有放射性的同位素称之为放射性同位素。放射性同位素的应用:机械探伤、消菌杀毒、作为示踪原子等。

8、1913年,美国物理学家密立根:测出元电荷的电量,即著名的“密立根油滴实验”。

9、1971年国际计量大会规定的7个基本单位:长度:米(m),质量:千克(Kg),时间:秒(s),电流:安[培](A),热力学温度:开[尔文](K),物质的量:摩[尔](mol),发光强度:坎[德拉](cd)。

六、相对论

1、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),

②热辐射实验——量子论(微观世界);

2、1900年,德国物理学家普朗克:解释物体热辐射规律时提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界。

3、1905年,爱因斯坦提出了狭义相对论,经典力学不适用于微观粒子和高速运动物体

①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;

②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

4、狭义相对论的其他结论:

①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)

②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。

③相对论质量:物体运动时的质量大于静止时的质量。

5、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。

三。热学中的物理学史

1、1827年英国植物学家布朗:发现悬浮在水中的花粉微粒不停地做无规则运动——布朗运动。

2、1661年英国物理学家玻意耳发现:一定质量的气体在温度不变时,它的压强与体积成反比,即为玻意耳定律。

3、1787年法国物理学家查理发现:一定质量的气体在体积不变时,它的压强与热力学温度成正比即为查理定律。

4、1802年法国物理学家盖·吕萨克发现:一定质量的气体在压强不变时,它的体积与热力学温度成正比即为盖·吕萨克定律。

四、常见光现象

光的折射:观察水中物体变浅,门上猫眼,蜃景,炎热夏天马路上的“水面”

光的色散:雨后彩虹,三棱镜

光的全反射:光纤通讯,晶莹水珠,夺目水晶,玻璃中的明亮裂痕,

光的干涉:七彩肥皂泡,增透膜,表面平直检测,马路积水的油膜,全息照相,

光的衍射:圆孔衍射,泊松亮斑,透过狭缝看到日光灯的彩色条纹,剃须刀旁边的模糊影子

光的偏振:立体电影,照相机镜头的偏振滤光片

第3篇:2015高考新课标物理学史汇编

力学部分

1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);

2.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

3.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

4.英国物理学家胡克对物理学的贡献:胡克定律;

5.1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

6.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

7.17世纪,德国天文学家开普勒提出开普勒三大定律;

8.牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

9.1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

10.1957年10月,苏联发射第一颗人造地球卫星;

11.1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次入太空。

12.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

电磁学部分

1.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。

2.1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

3.1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

4.1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

5.1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

6.1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

7.19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。

8.1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

9.法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

10.荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

11.英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。

12.汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。

13.1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。

14.1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。并由纽曼和韦伯总结得到

15.1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。

16.1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。

波动学部分

1.17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。

2.1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。

3.奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。相互接近,f增大;相互远离,f减少

4.1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波

5.1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。

6.1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

7.1800年,英国物理学家赫歇耳发现红外线;

8.1801年,德国物理学家里特发现紫外线;

9.1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。

光学部分

1.1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。

2.1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。

3.1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。

4.1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;

5.1887年,赫兹证实了电磁波的存在,光是一种电磁波

6.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;

②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

7.爱因斯坦还提出了相对论中的一个重要结论——质能方程式:。

8.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。

9.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)

10.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。

相对论部分

1.物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),

②热辐射实验——量子论(微观世界);

2.19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

3.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;

②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

4.1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;

5.激光——被誉为20世纪的“世纪之光”;

波粒二象性部分

1.1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。

2.1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)

3.1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

4.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;

5.1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。

原子物理学部分

1.1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。

2.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。

3.1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10-15m。

4.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。

5.1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。

6.1913年,丹麦物理学家波尔最先得出氢原子能级表达式;

7.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。

天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。

8.1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。

9.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,

并预言原子核内还有另一种粒子——中子。

10.1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。

11.1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。

12.1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。63、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

13.1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

第4篇:物理学史高中

物理学是研究物质及其行为和运动的科学。它是最早形成的自然科学之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理学》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。

在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德以及其后苏格拉底的哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自于这些哲学传统,并在中世纪时由当时的哲学家菲洛彭洛斯、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。

力学的历史背景

力学是最原始的物理学分支之一,而最原始的力学则是静力学。静力学源于人类文明初期生产劳动中所使用的简单机械,如杠杆、滑轮、斜面等。古希腊人从大量的经验中了解到一些与静力学相关的基本概念和原理,如杠杆原理和阿基米德定律。但直至十六世纪后,资本主义的工业进步才真正开始为西方世界的自然科学研究创造物质条件,尤其于地理大发现时代航海业兴起,人类钻研观测天文学所花费的心力前所未有,其中以丹麦天文学家第谷·布拉赫和德国天文学家、数学家约翰内斯·开普勒为代表。对宇宙中天体的观测也成为了人类进一步研究力学运动的绝佳领域。1609和1619年,开普勒先后发现开普勒行星运动三大定律,总结了老师第谷毕生的观测数据。伽利略的动力学

在十七世纪的欧洲,自然哲学家逐渐展开了一场针对中世纪经院哲学的进攻,他们持有的观点是,从力学和天文学研究抽象出的数学模型将适用于描述整个宇宙中的运动。被誉为“现代自然科学之父”的意大利(或按当时地理为托斯卡纳大公国)物理学家、数学家、天文学家伽利略·伽利莱就是这场转变中的领军人物。伽利略所处的时代正值思想活跃的文艺复兴之后,在此之前列奥纳多·达芬奇所进行的物理实验、尼古拉斯·哥白尼的日心说以及弗朗西斯·培根提出的注重实验经验的科学方法论都是促使伽利略深入研究自然科学的重要因素,哥白尼的日心说更是直接推动了伽利略试图用数学对宇宙中天体的运动进行描述。伽利略意识到这种数学性描述的哲学价值,他注意到哥白尼对太阳、地球、月球和其他行星的运动所作的研究工作,并认为这些在当时看来相当激进的分析将有可能被用来证明经院哲学家们对自然界的描述与实际情形不符。伽利略进行了一系列力学实验阐述了他关于运动的一系列观点,包括借助斜面实验和自由落体实验批驳了亚里士多德认为落体速度和重量成正比的观点,还总结出了自由落体的距离与时间平方成正比的关系,以及著名的斜面理想实验来思考运动的问题。他在1632年出版的著作《关于托勒密和哥白尼两大世界体系的对话》中提到:“只要斜面延伸下去,球将无限地继续运动,而且不断加速,因为此乃运动着的重物的本质。”,这种思想被认为是惯性定律的前身。但真正的惯性概念则是由笛卡尔于1644年所完成,他明确地指出了“除非物体受到外因作用,否则将永远保持静止或运动状态”,而“所有的运动本质都是直线的”。

伽利略在天文学上最著名的贡献是于1609年改良了折射式望远镜,并借此发现了木星的四颗卫星、太阳黑子以及金星类似于月球的相。伽利略对自然科学的杰出贡献体现在他对力学实验的兴趣

以及他用数学语言描述物体运动的方法,这为后世建立了一个基于实验研究的自然哲学传统。这个传统与培根的实验归纳的方法论一起,深刻影响了一批后世的自然科学家,包括意大利的埃万杰利斯塔·托里拆利、法国的马林·梅森和布莱兹·帕斯卡、荷兰的克里斯蒂安·惠更斯、英格兰的罗伯特·胡克和罗伯特·波义耳。牛顿三大定律和万有引力定律

艾萨克·牛顿,1687年,英格兰物理学家、数学家、天文学家、自然哲学家艾萨克·牛顿出版了《自然哲学的数学原理》一书,这部里程碑式的著作标志着经典力学体系的正式建立。牛顿在人类历史上首次用一组普适性的基础数学原理——牛顿三大运动定律和万有引力定律——来描述宇宙间所有物体的运动。牛顿放弃了物体的运动轨迹是自然本性的观点(例如开普勒认为行星运动轨道本性就是椭圆的),相反,他指出,任何现在可观测到的运动、以及任何未来将发生的运动,都能够通过它们已知的运动状态、物体质量和外加作用力并使用相应原理进行数学推导计算得出。

伽利略、笛卡尔的动力学研究(“地上的”力学),以及开普勒和法国天文学家布里阿德在天文学领域的研究(“天上的”力学)都影响着牛顿对自然科学的研究。(布里阿德曾特别指出从太阳发出到行星的作用力应当与距离成平方反比关系,虽然他本人并不认为这种力真的存在)。1673年惠更斯独立提出了圆周运动的离心力公式(牛顿在1665年曾用数学手段得到类似公式),这使得在当时科学家能够普遍从开普勒第三定律推导出平方反比律。罗伯特·胡克、爱德蒙·哈雷等人由此考虑了在平方反比力场中物体运动轨道的形状,1684年哈雷向牛顿请教了这个问题,牛顿随后在一篇9页的论文(后世普遍称作《论运动》)中做了解答。在这篇论文中牛顿讨论了在有心平方反比力场中物体的运动,并推导出了开普勒行星运动三定律。其后牛顿发表了他的第二篇论文《论物体的运动》,在这篇论文中他阐述了惯性定律,并详细讨论了引力与质量成正比、与距离平方成反比的性质以及引力在全宇宙中的普遍性。这些理论最终都汇总到牛顿在1687年出版的《原理》一书中,牛顿在书中列出了公理形式的三大运动定律和导出的六个推论(推论1、2描述了力的合成和分解、运动叠加原理;推论3、4描述了动量守恒定律;推论5、6描述了伽利略相对性原理)。由此,牛顿统一了“天上的”和“地上的”力学,建立了基于三大运动定律的力学体系。

牛顿的原理(不包括他的数学处理方法)引起了欧洲大陆哲学家们的争议,他们认为牛顿的理论对物体运动和引力缺乏一个形而上学的解释从而是不可接受的。从1700年左右开始,大陆哲学和英国传统哲学之间产生的矛盾开始升级,裂痕开始增大,这主要是根源于牛顿与莱布尼兹各自的追随者就谁最先发展了微积分所展开的唇qiāng舌战。起初莱布尼兹的学说在欧洲大陆更占上风(在当时的欧洲,除了英国以外,其他地方都主要使用莱布尼兹的微积分符号),而牛顿个人则一直为引力缺乏一个哲学意义的解释而困扰(

牛顿的理论体系是建立在他的绝对时间和绝对空间的假设之上的,牛顿对时间和空间有着如下的理解:“绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而在均匀地、与任何外界事物无关地流逝着。”“绝对空间,就其本性而言,是与外界任何事物无关而永远是相同的和不动的。”—牛顿,《自然哲学的数学原理》牛顿从绝对时空的假设进一步定义了“绝对运动”和“绝对静止”的概念,为了证明绝对运动的存在性,牛顿还在1689年构思了一个理想实验,即著名的水桶实验。在水桶实验中,一个注水的水桶起初保持静止。当它开始发生转动时,水桶中的水最初仍保持静止,但随后也会随着水桶一起转动,

于是可以看到水渐渐地脱离其中心而沿桶壁上升形成凹状,直到最后和水桶的转速一致,水面相对静止。牛顿认为水面的升高显示了水脱离转轴的倾向,这种倾向不依赖于水相对周围物体的任何移动。牛顿的绝对时空观作为他理论体系的基础假设,却在其后的两百年间倍受质疑。特别是到了十九世纪末,奥地利物理学家恩斯特·马赫在他的《力学史评》中对牛顿的绝对时空观做出了尖锐的批判。

第5篇:高中物理学史

一、力学:

1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);

2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;

3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

8、17世纪,德国天文学家开普勒提出开普勒三大定律;

9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。

10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。二、相对论:13、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验——量子论(微观世界);

14、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

15、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。16、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;

17、激光——被誉为20世纪的“世纪之光”;选修部分:三、电磁学:理科班(选修3-1):

18、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。

19、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

20、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

21、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

22、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

23、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

24、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。

25、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

26、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

27、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

28、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。

29、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。30、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)物理X科(3-2至3-5):三、电磁学:

31、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。

32、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。

32、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。四、热学(选做):

33、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。34、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。35、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。36、1848年开尔文提出热力学温标,指出绝对零度是温度的下限。五、波动学(选做):33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。

34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。

35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。

38、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

39、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。六、光学(选做):

40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。

41、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。

42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。

43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;1887年,赫兹证实了电磁波的存在,光是一种电磁波

44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:。七、波粒二向性:

46、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。

47、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。

48、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

49、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。八、原子物理学:

50、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。

51、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。

52、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

53、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。

54、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10-15m。

55、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。

56、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;

57、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。

58、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。59、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。

60、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。

61、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。

62、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。

63、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

64、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

第6篇:高中物理史实

1、前384年—前322年,古希腊杰出思想家亚里士多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。

2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用著名的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了第一架观察天体的望远镜;第一次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。

3、1683年,英国科学家牛顿:总结三大运动定律、发现万有引力定律。另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。其最有影响的著作是《自然哲学的数学原理》。

4、1798年英国物理学家卡文迪许:利用扭秤装置比较准确地测出了万有引力常量G=6。67×11-11N·m2/kg2(微小形变放大思想)。

5、1905年爱因斯坦:提出狭义相对论,经典力学不适用于微观粒子和高速运动物体。即“宏观”、“低速”是牛顿运动定律的适用范围。

2015机械能守恒定律教学反思
物理学史总结 第四篇

反思一:机械能守恒定律教学反思

首先对动能、势能和机械能等概念进行简单的复习,承上启下,为本节课做了必要的知识准备。紧接着演示钟摆的摆动,一方面提供了动能、势能相互转化的情景,另一方面提出了机械能总和如何变化这个紧扣本课主题的问题。对这个问题的讨论,先是从直线运动出发,应用动能定理进行详细、深入的推导,接着扩展到曲线运动,从实验上进行了验证,从而较为严密又完整地得出了机械能守恒定律。对机械能守恒定律的条件的认识,则从物体只受1个重力到除了重力以外还受多个力的情况,展开一层又一层的分析,还从实验上作了反证。如:为了说明有了空气阻力后机械能不再守恒,就用泡沫塑料球做成一个摆进行演示,效果明显。教学过程中为了突出“机械能守恒及其条件”这一重点,应用新授—应用—小结的程序。

从后面让学生对几道判断机械能是否守恒的基本性题目中可以看出,这节课的教学效果是比较好的。

这节课还有不足之处:如写势能表达式时,未先提示零势能面在何处;“守恒”这一关键的名词作为高中物理中第一次出现,解释得不够透彻;在一道例题的讲解中,对系统还是单个物体未作说明。这实际上也反映出,对一些很平常但又是很关键的问题学生经常要疏忽。师生间在学习过程中存在着一些“通病”。这再一次提醒我,教学要研究“教”,但也要研究“学”,甚至于应该更偏重于研究“学”。

反思二:机械能守恒定律教学反思

新课程标准要求学生在物理课的学习中不仅需要学到物理基础知识和实验技能,受到科学方法和科学思维的训练,受到科学态度和科学作风的熏陶,提高科学文化素质,而且需要体验科学探究过程,增强创新意识和实践能力,发展探索自然、理解自然的兴趣与热情,为终身发展,形成科学的世界观和价值观打下基础。围绕这一原则,我们要积极的转变教学方式和学生的学习方式。

笔者所教学的《机械能守恒定律》的教学设计正是努力朝着这个方向做的。

一、变验证型实验为探究型实验

教材中本节课只是从理论上推导和应用机械能守恒定律,如果按照传统的教学方法,只注重知识的传授和应用,而忽视学生探究、体验的过程,难免“穿新鞋走老路”,也不符合一个科学结论得出的一般规律。所以我觉得把验证机械能守恒的实验改为探究性实验更符合一般的规律和新课程标准的要求。

二、恰当的设置了探究点

科学探究要求打破课堂时间的限制,充分发挥学生的创造性。但怎样把课堂教学和科学探究有机的结合起来,是我们教师面临的一个大课题。我们的课堂受时间、空间的限制,不可能各方面都探究,为探究而探究只能死路一条,所以恰当的设置探究点很重要,应该既要让学生完成知识的学习又要参与探究。首先,本节课我自始至终都是以问题为中心,引入、过渡、分析结论、课堂小结等都以问题的形式出现。我努力培养学生的问题意识,因为问题是学生探究的起点。其次,探究的过程中我主要抓住了实验方案的设计、实验信息的收集与处理、学生实验的参与等几个环节。实验方案的设计能体现学生应用原有知识并且创新的能力,本节课学生就设计出了多种方案,有些已经打破了课堂、学校区域的限制,而这些正是新课标所要求的。学生的生活中有好多现象和事例需要学生去总结,培养学生这种关注生活、关爱大自然,搜集身边信息的意识也是我们的责任和要求。我觉得本节课在课堂上让学生自己设计表格、搜集整理实验信息是需要的和恰当的。学生在实验的过程中有穿不好纸带的,但有同学们在互相帮助中学会了,使不会的同学知道这是应用摩擦力的原理。我看在眼里喜在心里,这已经超越了老师的语言所提及的范畴,它无形中拓展了课堂的外延,这出乎意料的收获不正是我们所期望达到的效果吗?确实,组织好教学比单纯讲知识更重要。

三、注重了知识与技能循序渐进的教学

注重了机械能守恒定律得出的过程和基本的应用,一些变形的公式表达形式和应用方面的一些注意事项以及其深刻的内涵放到了下一课时讲,这样面向了全体学生,降低了教学起点,我觉得这也符合新课标的精神和要求。

四、注重了过程和方法的教学

首先,让学生从实验和理论两方面充分体验了一个科学结论得出的过程。这正是课堂的两个大环节,教学设计在这里也占用了较长的时间。

其次,让学生经历了科学探究的一般过程和思路,即:“创设情景——提出问题——猜测结论——实验验证——理论推导——得出结论——迁移应用”。

五、充分展示了学生的主体地位

学生观察思考提出问题,自己设计实验,又分小组亲自实验,自己搜集整理,自己总结出规律。整个课堂完全以学生为主体,切实做到了“教师搭台学生唱戏”。看到学生几个人一小组,热烈讨论整理的气氛,我充分体验到了一种满足感,适应于新课标的物理课堂应该是轻松活泼的。正如一位教育专家所说的:“鸦雀无声的课堂不是真正的课堂,真正的课堂是‘热热闹闹’的。”

六、学生的合作意识、态度情感和价值观得到了升华

学生在实验时,一只手拿纸带,一只手拿重锤,那就没有手控制开关,结果不得不与小组的同学合作;还有的同学请求其他组同学帮忙;还有一个同学主动帮助其他同学控制开关??合作探究的气氛在这里得到了充分体现。听到学生说“谢谢”、“没关系”时,看到他们笑嘻嘻、无拘无束的神态时,更加坚定了我继续搞探究教学,充分发挥学生主体地位的信心和决心。仔细品味起来,整个课堂中还有许多需要进一步挖掘改进的地方。受实验条件(多媒体教室无课桌和充足的电源)的限制,学生无法分组实验,逐个做实验在无形当中又多用了很多时间;最后习题的处理有点仓促。因为留下的时间少了;学生的热情还应该再调动的高一点。当然存在的问题,引起的争论在某种程度上也增加了这节课的价值,能够引起大家来思考或者是批判,也是有意义的。我会虚心接受意见,找到以后的增长点。

总之,我认为这节教学设计教改意识明显,符合新课程标准和素质教育的要求,是成功的。

反思三:机械能守恒定律教学反思

机械能守恒定律是本章的重点,学生对定律的得出、含义、适用条件应该有明确的认识。这是能够用这个定律解决实际问题的基础,教学中首先要重视这些内容,因此,我分三步完成机械能守恒定律第一课时的教学:第一步要使学生理解动能和势能之间可以通过力做功实现相互转化,第二步从理论上推导机械能守恒定律,第三步要使学生理解机械能守恒定律成立的条件。

1、动能与势能之间的相互转化

这部分内容教材的编写特点是很注意从生活中的典型实例入手导入课题。为此,我选择设计了几个的演示实验:烧杯倒水冲刷叶轮转动和竖直上抛小球,引导学生观察并思考,了解到动能和重力势能之间可以通过重力做功实现相互转化,并作了适当的拓展:由以上演示实验联想到东汉时期我国劳动人民就发明的水车磨坊和现代大型的水力发电站;另外,还利用水平弹簧摆球的实验,引导学生观察实验并细致分析,得出动能和弹性势能之间也可以通过弹力做功来实现相互转化的结论。

这样的教学设计既体现了物理教学提倡实验、观察、思考的特点,又重视学生独立思考能力的培养。教学设计发掘了教材资源,又不拘泥于教材,演示实验新颖,操作顺利流畅,完成了预定的教学目标。

通过实例的分析,使学生了解势能和动能相互转化的定性关系,知道一种能量减少,必然导致另一种能量的增加;然后提出动能和势能转化有什么定量关系,让学生进行讨论与交流并提出猜想,调动学生的积极性,培养学生的合作意识与交流能力,加强师生的互动性。不足之处在于,由于担心时间进度,处理不是很细致,提出的问题层次性不强。

2、机械能守恒定律的理论推导

不同于教材以小球的自由落体为例的教学设计,我选择的是伽利略摆作为课堂分析和理论推导的模型,利用动能定理和重力做功与重力势能的关系,要求学生自行独立分析并推导出在只有重力做功情况下的机械能守恒定律。备课时,我参考了人教版物理必修2的相关章节的内容,从而决定在课堂教学中,换用当年伽利略摆的实验,让学生认识到能量的观点其实早在牛顿之前就已经体现出来了,从而将物理学史的教学融入到课堂教学过程中来,并培养学生细致的观察能力,表面上看来没有关联的概念之间其实存在着很多联系。这样让整个推导过程上升到一个追寻守恒量的探究高度,而不仅仅是一个单纯的数学演算推导。

实际的课堂教学中,学生的理论推导过程用时应该较长,教师应该细致观察学生的推导进度,掌握好时间。这过程的处理还是稍显仓促,学生在黑板上的演算推导略显粗糙,有部分同学没有事先选取零势能参考面,所以应当提前强调这一点。我觉得必须要给课堂适当的留白,给学生自己思考和理清思路的时间,给学生充分分析和推理的机会。这就要求我们要精心设计课堂教学过程,以学生通过自学和引导学生发现知识和规律为主。课堂不是长篇累牍的讲解知识。教师在课堂上起的是引导的角色,所以必须要做到内容上有所取舍并千方百计地精益求精,教学设计重质而轻量,这样才能够高效率的完成既定的课堂教学安排。

学生通过自行推导得出机械能守恒定律,要引导学生做好讨论和交流,展示自己的推导结果。这一阶段是前面理论推导的点睛之笔,对于学生理解机械能守恒定律的内涵有着极其重要的意义,千万不能够粗略带过,必须加以详细的分析和解读,这部分我选择以讲授为主,重点强调机械能守恒定律的两种表达方式的物理意义:

即:增量式 -Ep=△Ek/△Ep+△Ek=0;总量式EK1+EP1=EK2+EP2

增量式所体现的正是我们在第一部分教学中让学生思考的, “一种能量减少,必然导致另一种能量的增加”。总量式则体现了前后两个状态量——初末状态机械能之间的守恒关系。

3、机械能守恒定律的适用条件

学生对机械能守恒定律的适用条件应该有明确的认识,并且会根据适用条件判断具体过程中机械能是否守恒,这是应用机械能守恒定律解决问题的前提。因此,这部分内容是整个第一课时教学的重中之重。我的教学安排是在顺利推导出机械能守恒定律的表达式后,仍借用伽利略摆的模型和弹簧振子模型,启发并引导学生思考摆球的受力情况和各力的做功情况,得出:只有重力做功和弹力做功,系统的动能和势能可以相互转化,但总的机械能保持不变。在巩固训练环节中,我选取了常见的实例,第一组习题是重力势能和动能间的转化,第二组习题是弹性势能和动能间的转化,让学生判断各个情景中机械能是否守恒。每安排一组判断性习题之后,我会适当引导学生总结,让学生思考:只受重力与只有重力做功有何区别?通过讨论与交流使学生更深刻地认识和掌握机械能守恒定律成立的条件,正确理解“只有重力做功和弹力做功”的真正含义是:1、物体只受重力(或弹力)作用;2、物体除受重力(或弹力)外,还受其他力作用,但其他力不做功或代数和为零。

从学生的学习情况来看,这部分内容的处理基本达到了教学设计的要求,学生能够判断一些简单情景中机械能是否守恒。不足之处在于,所举的实例难以涵盖所有的情景,课堂时间有限,难以展开讲解。所以,在今后教学中,我应该注重基本方法和基本思路的形成,培养学生独立分析的能力。只有让学生掌握了最基本和最朴实的物理思想方法,才能以不变应万变,真正做到让学生举一反

反思四:机械能守恒定律教学反思

机械能守恒定律是高中物理中非常重要的规律,尽管能够应用机械能守恒定律解决的问题也可以应用动能定理求解,但在明确了系统遵循机械能守恒后,其形式上有非常简练的表达优势,尤其是该规律不追究过程,只要求在选定零势能面后表达出始末态的机械能即可。

然而机械能守恒定律难就难在系统守恒条件的确认上,针对不同的系统,

2015中学生科技论文范文
物理学史总结 第五篇

第1篇:中学生科技小论文范文

草莓的无土栽培

三明市列东中学兴趣组(365000)

摘要:1、利用学校的生物园地,通过配制合理的营养液,完全可以进行草莓的无土栽培。

2、无土栽培的草莓具有生长速度快、长势好、花芽分化早、开花结果早、产量高的特点。

关键词:培养基、营养液、无土栽培、简单易行

将作物栽培在除土壤以外的培养基上,叫无土栽培。无土栽培具有不占地或少占地、换茬快、环境清洁、产品无污染和生长好、品质优、色鲜味美等优点,为花卉蔬菜、粮食以及水果生产的工业化、自动化开辟了广阔的前景。

一、实践目的

通过对草莓的无土栽培实践活动,使我们初步掌握无土栽培的技术,懂得利用水培法来确定植物必须矿质元素的原理和矿质元素对植物的生理作用,同时也培养了同学们的学习兴趣和实践能力。

二、实践原理

植物根从土壤溶液中吸收水分和无机盐,土壤颗粒主要起着固着作用。根据这一原理,将植物生活所需的无机盐按一定比例配成营养液进行作物的无土栽培。

三、实践方法

采用与泥土盆栽草莓相对照试验,盆栽草莓使用一般的菜园土作固着物,施用化肥和农家肥,进行水肥管理。

【物理学史总结】

四、实践器材

无土花盆(双层塑料套盆或采用罐头瓶、硬泡沫塑料做定植板也行)、草莓苗、营养液原液、天平、洗净的碎石或蛭石、温度计等。

五、试验与管理

1、试验时间:1997年9月-1998年5月;1998年9月-1999年5月

2、试验地址:校生物园

3、营养液原液:经试验得知,表1为最佳配方。

4、栽培方法:选择无病虫害、植株矮壮、具4-5片叶、顶芽饱满的壮苗,洗净根上泥土后,定植在无土花盆的上盆中,用碎石子或蛭石作固着物,下盆中盛清水,待长出新根后(1周左右)将清水倒掉,换上培养液。

表1无土栽培草莓营养液原液配方

成分名称

含量(MG/L)

硝酸钙

236

硝酸钾

303

磷酸铵

57

硫酸镁

123

三氯化铁

500

硼酸

1.2

氯化锰

0.72

5、管理:

(1)及时添加营养液。每周补液1-2次。每次50-100ml。进入4月份以后,气温升高、蒸发快,同时正当开花、结果盛期,需肥量大,每2-3天补液1次,并要增加营养液的浓度。一般开花前培养液浓度是

原液∶水=1∶9

开花后培养液浓度为

原液∶水=1.7∶8.3

(2)隔天上午喷水1次,4月开始每天喷水1次,保持相对湿度70-80%。

(3)光照为生物园里的自然光照(注意不要放在直射太阳光下,以免培养液温度升得过高造成根坏死)。

(4)注意及时摘除老叶、匍匐茎。当发现植株下部的叶片呈水平着生,开始发黄、叶柄基部也开始变色时,应立即摘除。匍匐茎消耗养分大,为保证果大质优,发现生在叶片基部的幼嫩线状物——匍匐茎,要及时摘除。

(5)注意病虫害防治。草莓虫害主要有蚜虫和红蜘蛛,可用内吸杀虫剂防治,如甲胺磷、乐果等。病害主要有灰霉病、病毒病等,可用波尔多液、托布津等杀菌剂防治。

(6)注意及时疏蕾垫果。

六、观察记录情况

1、根系在2℃时开始活动,在7℃时开始长新根,最适生长温度为15-20℃,高于30℃时停止生长,并有根部变色受害情况,在-8℃时根系受到冻害。

2、地上茎、叶气温在5℃时开始生长,生长最适气温为15-25℃气温过高过低生长都较缓慢,气温高于30℃以上有老叶焦边现象。

3、气温在5℃以上开始花芽分化,花芽分化最适气温在5-15℃之间,开花在10℃以上,开花盛期在15℃左右。

4、培养液pH值在6.5-7最为适宜。

5、开花结果情况

见下表

表2无土栽培草莓开花结果记录统计表

盆数

盆栽时间

第一花序

第二花序

总果实/株

月/日

叶片数

开花

月/日

小花朵数

果实成熟月/日

开花月/日

小花朵数

果实成熟月/日

数量

重(克)

20

9/23

9/26

4-5

3/23

4/6

11-17

4/12

4/27

4/10

4/21

5-9

4/20

5/18

9-171

53-257

七、结果与体会

1、无土栽培的草莓比盆栽草莓生长速度快、长势好、花芽分化早、开花结果早,从定植到第一花序开花和果实成熟都比盆栽提前一周左右,并极少有病虫害。

2、试验证明,室内无土栽培草莓方法简单易行,成本较低,在家庭中推广种植可充分利用室内空间,既可以观赏、美化环境,又能品尝到气味芳香、营养丰富的春季水果珍品,是一举多得的好事,深受群众欢迎。通过实践,既帮助我们理解了教材,又培养了学习兴趣和实践能力,并促进了无土栽培技术在本地的推广。

本文在指导老师林薛松的帮助下完成,特表谢意。

第2篇:探究让学生体验科学的乐趣

一、设计理念

随着新课程改革和推进,教学过程中更强调注重学生是教育教学的主体,教师仅起引导、启发、辅助学生学习的作用。本节课我采用多媒体课件与实验探究、理论探究相结合的教学手段,鼓励学生主动参与,勇于深思,引导学生用科学的策略来获得知识,逐步培养他们分析理由和解决理由的能力。

“动能定理”是与“牛顿运动定律”重要性相当的知识点,本节课是“动能和动能定理”教学的第一课时,是整个动能定理教学中基础且重要的一个环节,主要是帮助学生了解动能的表达式,通过实验探究和理论推导掌握动能定理的内容,学会应用动能定理解决物理理由。同时,利用本节课的学习引导学生学会用科学的学习策略获得知识,体验科学探究的乐趣,激发学生发现理由、解决理由的能力。

二、教学目标

1.知识与技能:会推导动能定理;理解动能定理,会用动能定理进行计算;理解动能定理所阐述的作用。

2.过程与策略:通过探究外力对物体所做的功与物体动能的变化关系,通过理论分析与论证的过程,使学生受到理性思维的训练;通过实践与应用,使学生的知识学以致用。

3.情感、态度与价值观:通过实验与探究,培养学生的探究精神与实践能力;通过小组讨论和合作交流,培养学生的语言表达能力与团结协作的精神;通过自学材料,培养学生的阅读、理解能力。

三、教学策略选择与设计

小组学习、合作讨论、产生式教学策略。讲授法、演示法、讨论法。

四、教学重点及难点

重点:动能定理的推导过程

难点:动能定理的理解和应用

五、教学过程及设计意图

(一)动能

提问:动能的大小由什么决定?介绍动能的定义式。

提问:动能的单位是什么?

提问:它是标量还是矢量?

学生活动答:物体由于运动而具有的能量叫动能。

答:动能的大小由物体的质量和速度大小决定。

答:动能的单位和功的单位相同。

学生讨论:动能是标量。

(设计意图:结合学生初中所学的有关动能的知识,引发学生主动积极深思,进一步拓展学生对动能的认识,激发学生的学习兴趣。)

(二)动能定理

教师活动引入动能定理。在前面我们已经学过,力做功是能量转化的量度,例如重力做功对应于重力势能的变化,弹簧弹力做功对应于弹簧弹性势能的变化。那么动能的变化是由什么力做功引起的呢?(实验设计以及实验过程、实验结论由学生讨论完成。)

(设计意图:用学生已经掌握的实验能力进一步拓展新的实验,收获学以致用的感觉。紧紧扣住探究过程,提出理由,激发学生的研究兴趣和学习热情,发挥学生的主观能动性。)

探究实验2:①介绍实验仪器;

②实验目的:研究自由落体运动中重力做功与动能增量的关系;

③数据记录及处理(借助EXCEL);

④实验结论:物体自由落体时,重力做功等于动能的增量。

(四)例题

学生活动练一练,做一做,想一想。

(设计意图:通过对动能定理的简单应用,使学生体会掌握新知识并能学以致用的成就感;加强应用动能定理中对过程量选取的认识,提高学习兴趣。)

六、教学反思

新课程改革要求教师从知识的传授者变为学生学习的指导者和创新思维的培育者。本节课积极发挥学生自主学习、合作学习和探究学习的主观能动性,让学生在轻松和谐的课堂氛围中学有所得,学有所用。下面结合本节课的教学过程,谈谈本人的教学反思。

1.介绍动能。

第一,播放动态影像“子弹射入墙壁”,让学生感受动能的威力。课堂导入部分忌拖泥带水,这样的动态影像既能够激发学生的兴趣,又能够让学生第一时间感受到本节课学习的对象,使围绕“动能”的学习顺利展开。

第二,探究动能大小与什么因素有关。学生有个体差异,教师应耐心聆听每个学生的回答,善于挖掘学生****中的闪光处,并善于引导他们。在讨论研究方案时,某学生回答:“将纸面倾斜,同地点释放不同质量小球,看其至斜面底端的动能大小关系。”这个回答虽然实验可操作性不够理想(

第三,得出动能概念、表达式及其一些性质。对学生已经学习过的有关动能的知识或能够直接得出的结论,比如概念、单位和标量等,教师不宜赘述,要让学生养成自主学习的习惯,就必须引导他们积极解决力所能及的理由。

2.探究动能定理内容。

第一,实验探究动能变化与什么力做功有关。课堂实验宜简洁、清晰、重点突出且有说服力。利用自由落体运动模型,实验可操作性就比较强。实验操作前,就需让学生做好充分准备,这其中包括明确实验目的、严格的操作步骤和数据处理方案。比如在操作过程中手应抓住纸带最上端释放,就需要清晰地告知理由。由于场地的限制,本节课只可以做演示实验。演示实验虽然没有学生实验参与度高,但也可同样达到实验教学目的,借助现代多媒体教学就可以弥补演示实验中看不清、数据处理含糊或是时间过长的不足。一个学生读数其余学生监督,采用EXCEL处理数据,快速且有效。通过5组数据的比较,学生很容易得出:“自由落体运动中重力做功等于动能的变化。”

第二,理论推导动能定理。知识是联动的,运用前面所学的牛顿运动定理和运动学特征推导动能定理,有助于学生进行知识整合,提高知识能力层次。投影学生的推导过程,加强学生课堂中的积极参与度。

第三,比较得出“合外力做功等于动能的变化”。理论推导后教师提问:“此处F是什么力?”学生回答“恒力”“合外力”。学生的回答不一定是教师即时需要的****,这时教师可以巧妙地引导,但不要错失****。关于“合外力”可以很好地导出动能定理内容;关于“恒力”可以引出动能定理也适用变力做功。利用第二个探究实验中“重力做功略大于动能的变化”这个结论,学生深思后得出误差来源,是因为整个过程还有阻力做功,进一步说明“合外力做功才等于动能的变化”。教师应珍惜每一个提出的现象或理由,围绕它们,由浅入深,由表象到本质,潜移默化地一步步将理由明了,让学生逐步在自主深思的过程中掌握学习内容。

3.动能定理的应用。

作为第一节新授课,起点不宜过高,从学生实际能力出发,选择合适的例题,让学生自行解决,要让学生有自信为继续学习以后的内容做准备。回到起初子弹射墙壁的情景,举此例让学生对所学的新知识饶有兴趣地进行应用。最后《发展空间》一题,提高学生的“最近发展区”层次,让每一次“跳一跳,便够得着”并且“越跳越高”。

本节课课堂气氛活跃,尤其学生参与演示实验时,每一名学生都专注于实验的进行,体现了“动嘴不如动手,动手更动脑”的教学理念。但对学生的提问要从学生的认知习惯出发,理由不能太大,可以逐层渐进式设置理由关卡,这样,学生回答理由就有热情。学会聆听和赞赏,是每个教师必备的基本素养。任何一个教学难点都需经历丰富、曲折的认知探究过程,教师唯有包容学生暂时的认知错误,积极鼓励学生,才会发现并有针对性地引导学生在思维矛盾冲突中了解真谛。从学生的回答中还可以捕捉到动态生成资源中有作用的成分,从而更好地研究教材和学生,优化教学策略和手段,丰富自己

的教学经验,进一步提高教学水平。

另外,本节课还需尽量多地让不同学生参与回答、板书、实验操作和质疑提问,以提高学生的课堂参与度。

第3篇:中学生科技论文范文

树干为什么是圆的

在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。

在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。

经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。

以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。

在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。

第4篇:中学生科技论文范文

在书上看到这样一个实验,书上说这是一个谜题,其实可以用现在的物理学已有的知识来解释。

原题是这样的,用一条透明的塑料管,在管子的一头接上一个漏斗,并将其接在1m左右的支架上,将另一头接在一个圆柱体物体上,并绕5~6圈,注意不可以折管,要保持管的畅通,更值得注意的是,漏斗一端的水平高度大于另一头出口的高度,然后从漏斗的那一头放进水。会发现,漏斗一端的水平很高时,远高另一端的水平线,水竟然不会从另一端流出来。

这个实验以谜题的形式刊登在书上,大家都认为很难解释这个实验,其实在这个实验中,首先值得注意的是螺旋管中的空气。假如没有空气,将不会出现这种现象。

解释这个实验,要从气体压缩的知识入手,我们知道气体压缩产生了内能,而内能是由分子势能和分子动能组成的。压缩气体使分子间的距离减少,水管中水的重力对气体做功,一部分表现为分子动能,以热量的形式与外界进行能量交换,另一部分以分子势能的形式存在,根据能量守恒定律,高水平的水就不能穿过带有空气的螺旋管,当然气体的分子势能也有限,当具有更高的重力势能的水可以从中通过。

分子势能在自然条件下恢复需要能量,假如没有分子势能,气体将被无限压缩,而不会恢复原来的体积这并不符合实际的现象。

这在工业,生活上很有应用价值的。保证管道运输的压力足够,必须排尽管道中的气体,才能保证运输的顺利。分子势能还广泛运用在汽车上有人们熟知的安全气囊,还有气囊悬挂系统,气囊起到一个反冲的作用,从微观意义上讲,就是压缩做功与分子势能的转化。在小的时候我曾玩了一个游戏,在一个空的玻璃瓶中,放入一个点燃的鞭炮,瓶不会破,而在一个相同的玻璃瓶中,加入水,再放入一个鞭炮,瓶就会破,当然这样很危险,希望大家不要模仿。当时只是好玩,并不知道其原理,水的分子势能变化小,气体变化大,从另一个意义上说明了,分子势能起缓冲作用。

在微观世界有太多的人类未知,有待你我发现。在生活中观察现象,从现象中认识本质,从本质中思考科学,相信你一定能成功!

第5篇:关于的要把科学方法渗透到初中物理教学中

在知识经济竞争的时代,物理教学要适应“应试教育”向“素质教育”转轨的要求;必须从单纯的“学科教育”转向“科学的教育”,把科学策略渗透到教学活动中去,让学生在学习活动中去体验、体会这些科学策略,并掌握必要的科学知识,为他们的素质发展奠定必需的科学策略、科学能力、科学品质的基础。掌握一些科学策略,也为他们的终生学习打下良好的基础。

一、时代需要科学策略教育

在传统的物理教学中,在应试教育的压力下,对于科学知识的传授,是只重结果而忽略过程,重标准****而忽略智慧开发,评价教学成败的标准,就是看学生能否获得正确的****,而事实上,在解决实际理由的过程中,重要的并不是适用数据,而是确定什么数据是有用的。而当前世界上,特别是美国、英国、日本等科学领先的国家十分重视科学策略的教育,并强调要让学生懂得“研究策略”,要掌握“获得知识的程序和手段”,要学会进行“科学思维”。我国现行的九年制义务教育的目标,也明确提出了“要重视科学态度和科学策略的教育”。面对当今世界新的技术革命的挑战形势,单纯的知识传授将使学生无法适应社会的进步,更谈不上推动社会的发展。所以,素质教育是时代的要求,是科学发展的要求。而素质教育包括科学知识、科学策略、科学态度和科学精神。其中科学策略又是核心,科学策略教育对于培养学生优良的科学品质、培养学生的创造性思维和探索能力是其他方面的教育所不可替代的。

二、初中物理教材中相关科学策略的内容分析

多年来,初中物理教材的内容都是根据教学大纲编写的,它的主体当然是物理学科的知识体系,可教材对知识点逻辑联系采用显性处理,而对物理知识的内在联系和科学策略则采用隐性处理,即不在课文中写明,但却融在对知识的分析中,让学生在学习的过程逐渐地去领会掌握,由于考虑到初中是初学物理,接收力差,有些不适宜的如物理模型,在初中物理教学中是不提出的,而只是把客观复杂的事物和过程进行简单化后让学生研究,所以,初中物理教学中出现的理由都是经过处理的,极其简单的,学生容易接收的,而科学教育法在教学中一般不提出名称,其内涵由教师渗透给学生。如:等效替代法、转换法是物理学中实验成功的最根本、最重要的思路。在初中物理教材中现也很多,这些策略都是学生能够接受的。我们根据初中物理教材的内容顺序,以及学生接受能力的发展,把初中物理科学策略的教学目标分成感受、了解、掌握。感受:是学生能意识到使用此种策略的好处,但不一定记住这种策略的名称和相关知识;了解:是学生知道采用什么策略,并了解研究过程,为什么要用这种策略;掌握:是学生初步掌握了怎样运用这种策略,能在教师的指导下,在新知识中能运用这一种策略研究、解决有关理由。

三、科学策略教育的实施

在初中物理教学中,蕴含着许多科学策略,但我们不能唯策略讲策略,要用新课程地基本理念指导教学工作,要时时做有心人,把握时机,潜移默化,把科学策略渗透到教学活动中,恰当点拨,把学科知识和科学策略教育有初地结合起来,采用隐性和显性的原则,根据教材内容选择合适的方式展开。如在利用物理学史时渗透的科学策略就侧重科学态度和精神;在物理基础知识的传授中就渗透各种科学策略;在实验过程中渗透的科学策略就侧重观察和实事求是态度,在应用习题中就渗透及时反馈和修正。科学策略教育在实施中应遵循以下几点:

(一)根据年龄特征循序渐进

对于初中学生来说,他们的观察能力和动手能力已逐步

形成,但是他们的抽象思维能力还未充分发展.猜想能力还较差,他们对策略也不太感兴趣。因此,初中阶段的物理课应着重进行观察和实验策略的教育;对于科学思维策略,只能隐性渗透,即在教师的指导下接受分析、比较、推理、想象、概括等思维策略的训练。当然,对学生能力的培养不是一朝一夕能完成的,只有长期坚持,以达到素质教育的目的。

(二)从隐性过渡到显性

在实际教学中,同一种科学策略会多次用到,但是,根据教学要求应按层次展开,逐步递进。如制约变量法,教材中曾多次用到,在讲影响蒸发快慢的因素时,一般不作介绍和强调这一策略;讲决定导体电阻大小的因素时,可适当介绍这一策略;讲欧姆定律时,应具体讲解怎样应用这一策略;讲物体吸收热量的多少时,就可让学生自己运用这一策略来解决理由了。类似这种教材中出现多次的策略,如比值定义法等也可按层次从隐性过度到显性。

(三)将各种科学策略有机地结合

在物理教学过程中,各种科学策略交织在一起,教师不可能将一种科学策略完成以后再进行另一种策略的教育,因此,必须充分利用教材中的科学策略教育因素,把各种策略有序地结合在一起进行教育。如牛顿第一定律推导,就综合了多种科学策略:让小球从同一斜面的同一高度静止滚下——制约变量法;平面越光滑,运动距离越小,如无摩擦,小球将一直匀速运动下去——合理外推;而平面无摩擦——理想化策略。

四、科学策略教育的注意点

首先,物理学中科学策略的教育离不开物理学实际和学生实际。科学策略的学习比物理知识的学习更难,它不是一朝一夕就能让学生理解和掌握的,特别是初中物理科学策略大多是隐性的,只有长期地熏陶下学生才能潜移默化地自觉与不自觉地学到一些科学策略。其次,科学策略教育的目的,是为了更好地获取知识,教学突出获得知识的过程而不是轻视知识的传授。科学策略是获得知识的桥梁,离开了物理知识传授,科学策略就是一句空话。最后,教学是教师和学生共同活动的过程,教师是教的主人,学生是学的主人,教师在制科学策略教学目标和方案时,应根据学生的实际情况,因材施教,严格遵循“感知、认识、理解、掌握”这样一条认知规律,使学科策略教育真正落到实处。

第6篇:中学生科技论文范文

星期天,我从车库里抓来两只老鼠。这两只可怜的小老鼠即将成为我的实验品。它们不停地挣扎着,圆溜溜的一次性薄膜桌布小眼睛瞪着我。我把第一只小巧玲珑老鼠放在一个大鱼缸里,用把玻璃瓶封得严严实实的,生怕瓶里的空气与外界的空气相通。我仔细地观察着,只见小老鼠沿缸着壁,绕着缸底快速地向前窜。咦,小老鼠不是活得好好的吗?难道爸爸说的不是真的?可是,没过几分钟,只见小老鼠绕圈的速度越来越慢,直到停滞不前,奄奄一息的样子。顿时,我把一次性薄膜桌布轻轻拿开,捉出第一保小老鼠,放进第二只小老鼠,又搬入了四盆枝繁叶茂的植物。然后轻轻盖上一次性薄膜桌布。我不停地拍打鱼缸,只见小老鼠惊慌地乱窜。过了好久也没要咽气的样子。这个实验证明了植物可以输送动物所需要的氧气。

为了进一步证明人类和动物对植物的依赖性。我来到我们家附近一个饲料加工厂。那儿的空气里到处弥漫着一股哝哝的灰尘味,熏得我直咳嗽。我感到十分难受。然后,我又跑向我们家屋后的一片竹林里,那是一个空气新鲜的地方,我感觉极为清爽。这个实验证明植物可以净化空气。使人呼吸顺畅。

这两个实验证明,人类和动物的生存与植物有密切的关系。这其中到底有多大的科学道理呢?我还到上网查询,总结出以下几点:①人必须依靠植物提供氧气,只有植物才能制造氧气。如果说一个人几天不吃饭、几天不喝水且有一息尚存的话,几分钟就可能性命难保,氧气可是人生命活动的第一需要呀!一个成年人每天呼吸约2万多次,吸入氧气0.75千克,呼出二氧化碳0.9千克。②动物与植物的呼吸,物质的燃烧,也都要消耗氧气,释放二氧化碳。这样一来,空气中的氧气不就一天天增加么?不!天地间之所以没有产生过这种危机,就是因为植物既是天然氧气“制造厂”,又是二氧化碳的“广阔市场”。③有人做过统计,1公顷阔叶林,在生长季节每天能制造氧气750千克,吃掉二氧化碳1000千克。所以算起来,只要有10万平方米的林木,就可以供给一个人氧气的需要量,并把呼出的二氧化碳吸收掉。因为有植物源源不断地补充氧气,空气中的氧气才能保持基本恒定。相反,如果没有植物,地球上的氧气只要500年左右的时间既可以用完。

2016八年级历史竞赛总结
物理学史总结 第六篇

八年级历史竞赛总结

十五周星期五迎来了我镇一年一度的八年级各科知识竞赛。那晚,我的心情如天空一样开始下着蒙蒙细雨。

今傍晚,终于等来校长的短信,其中历史第七。是我校所有学科最差的,导致我校总体排名靠后,身为八年级历史学科唯一任教者,我是应该负全部责任的。

在此,我自我分析,作总结:

回顾这学期十五周里,我的历史课上,无论是在哪个班,我都在享受课堂,与学生交流谈心。虽然各课的知识要点我都有要求学生做笔记,并熟读背诵,但检查只停留在笔记和辅导书的填写上。我得出的结论是:“时间在哪里,你的成就在哪里。”。

此外,竞赛前校内几次质检发现了诸多问题,我虽对学生施加压力,但还不够,没让这群受伤的兔崽子竭尽全力去逃脱猎狗的捕杀。他们或许只是尽力而已。教不严,师之过。

此次八年级竞赛,我校未能取得理想成绩。我笔拙,写不出更好的句子来表达全校师生的心情,只能用曾经表达自己心情的句子:“伤痛的心在流泪,破碎的梦难追回!”来形容。

同时,我恳请学校领导把我这学期的绩效工资分配给八年级其他科任老师,让我愧疚之心好受些。

过去的已成为历史,现在才是我们最有所作为的时候,我想带领全级的学生吸取着深刻的教训,化悲痛为力量,让他们勇敢的去迎接明年的下一次的决战。

李绪鑫

2016.12.16晚

以上就是中国招生考试网http://www.chinazhaokao.com/带给大家的精彩成考报名资源。想要了解更多《物理学史总结》的朋友可以持续关注中国招生考试网,我们将会为你奉上最全最新鲜的成考报名内容哦! 中国招生考试网,因你而精彩。

相关热词搜索:初中物理学史总结 高考物理学史总结

最新推荐成考报名

更多
1、“物理学史总结”由中国招生考试网网友提供,版权所有,转载请注明出处。
2、欢迎参与中国招生考试网投稿,获积分奖励,兑换精美礼品。
3、"物理学史总结" 地址:http://www.chinazhaokao.com/wendang/gongzuozongjie/568727.html,复制分享给你身边的朋友!
4、文章来源互联网,如有侵权,请及时联系我们,我们将在24小时内处理!