当前位置: 首页 > 文档 > 工作总结 > 二次函数的图像和性质重点和难点

二次函数的图像和性质重点和难点

2016-11-21 12:00:13 工作总结 来源:http://www.chinazhaokao.com 浏览:

导读: 二次函数的图像和性质重点和难点(共9篇)二次函数重点难点总结初中二次函数知识点总结一、二次函数概念:a0)b,c是常数,1.二次函数的概念:一般地,形如yax2bxc(a,的函数,叫做二次函数。 这c可以为零.二次函数的定义域是全体实里需要强调:和一元二次方程类似,二次项系数a0,而b,数.2 二次函数yax2...

以下是中国招生考试网www.chinazhaokao.com为大家整理的《二次函数的图像和性质重点和难点》,希望大家能够喜欢!更多资源请搜索工作总结频道与你分享!

二次函数重点难点总结
二次函数的图像和性质重点和难点 第一篇

初中二次函数知识点总结

一、二次函数概念:

a0)b,c是常数,1.二次函数的概念:一般地,形如yax2bxc(a,的函数,叫做二次函数。 这

c可以为零.二次函数的定义域是全体实里需要强调:和一元二次方程类似,二次项系数a0,而b,

数.

2. 二次函数yax2bxc的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,

二、二次函数的基本形式

1. 二次函数基本形式:yax2的性质: a 的绝对值越大,抛物线的开口越小。

2. yax2c的性质: 上加下减。

3. yaxh的性质:

左加右减。

2

4. yaxhk的性质:

2

三、二次函数图象的平移

1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式yaxhk,确定其顶点坐标h,k; ⑵ 保持抛物线yax2的形状不变,将其顶点平移到h,k处,具体平移方法如下:

2

2. 平移规律

在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:

⑴yax2bxc沿y轴平移:向上(下)平移m个单位,yax2bxc变成

yax2bxcm(或yax2bxcm)

⑵yax2bxc沿轴平移:向左(右)平移m个单位,yax2bxc变成

ya(xm)2b(xm)c(或ya(xm)2b(xm)c)

四、二次函数yaxhk与yax2bxc的比较

从解析式上看,yaxhk与yax2bxc是两种不同的表达形式,后者通过配方可以得到前b4acb2b4acb2

者,即yax,其中h,. k

2a4a2a4a

2

2

2

五、二次函数yax2bxc图象的画法

五点绘图法:利用配方法将二次函数yax2bxc化为顶点式ya(xh)2k,确定其开口方向、

对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴c、以及0,c关于对称轴对称的点2h,c、与x轴的交点x1,0,x2,0(若与x轴的交点0,

没有交点,则取两组关于对称轴对称的点).

画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.

六、二次函数yax2bxc的性质

b4acb2b

1. 当a0时,抛物线开口向上,对称轴为x,顶点坐标为.

2a4a2a

当x

bbb

时,y随x的增大而减小;当x时,y随x的增大而增大;当x时,y有最小2a2a2a

4acb2

值.

4a

b4acb2bb

2. 当a0时,抛物线开口向下,对称轴为x,顶点坐标为.当时,y随x

2a4a2a2a

bb4acb2

. x的增大而增大;当x时,y随x的增大而减小;当x时,y有最大值

2a2a4a

七、二次函数解析式的表示方法

1. 一般式:yax2bxc(a,b,c为常数,a0); 2. 顶点式:ya(xh)2k(a,h,k为常数,a0);

3. 两根式:ya(xx1)(xx2)(a0,x1,x2是抛物线与x轴两交点的横坐标).【二次函数的图像和性质重点和难点】

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只

有抛物线与x轴有交点,即b24ac0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

八、二次函数的图象与各项系数之间的关系

1. 二次项系数a

二次函数yax2bxc中,a作为二次项系数,显然a0.

⑴ 当a0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大; ⑵ 当a0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.

总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小. 2. 一次项系数b

在二次项系数a确定的前提下,b决定了抛物线的对称轴. ⑴ 在a0的前提下,

当b0时,当b0时,当b0时,

b

0,即抛物线的对称轴在y轴左侧; 2a

b

0,即抛物线的对称轴就是y轴; 2a

b

0,即抛物线对称轴在y轴的右侧. 2a

⑵ 在a0的前提下,结论刚好与上述相反,即 当b0时,当b0时,

b

0,即抛物线的对称轴在y轴右侧; 2a

b

0,即抛物线的对称轴就是y轴; 2a

b

0,即抛物线对称轴在y轴的左侧. 2a

总结起来,在a确定的前提下,b决定了抛物线对称轴的位置. 当b0时,

ab的符号的判定:对称轴x

b

在y轴左边则ab0,在y轴的右侧则ab0,概括的说就是2a

“左同右异” 总结:

3. 常数项c

⑴ 当c0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正; ⑵ 当c0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; ⑶ 当c0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负. 总结起来,c决定了抛物线与y轴交点的位置.

b,c都确定,那么这条抛物线就是唯一确定的. 总之,只要a,

二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1. 已知抛物线上三点的坐标,一般选用一般式;

2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式; 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.

九、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x轴对称

ya2xbx关于cx轴对称后,得到的解析式是yax2bxc;

yaxhk关于x轴对称后,得到的解析式是yaxhk; 2. 关于y轴对称

ya2xbx关于cy轴对称后,得到的解析式是yax2bxc;

22

yaxhk关于y轴对称后,得到的解析式是yaxhk; 3. 关于原点对称

ya2xbx关于原点对称后,得到的解析式是cyax2bxc; yaxh关于原点对称后,得到的解析式是kyaxhk; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)

2

2

22

b2

关于顶点对称后,得到的解析式是c yaxbxyaxbxc;

2a

2【二次函数的图像和性质重点和难点】

2

yaxhk关于顶点对称后,得到的解析式是yaxhk. n对称 5. 关于点m,

22

n对称后,得到的解析式是yaxh2m2nk yaxhk关于点m,

22

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原

抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

十、二次函数与一元二次方程:

1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况):

一元二次方程ax2bxc0是二次函数yax2bxc当函数值y0时的特殊情况. 图象与x轴的交点个数:

① 当b24ac0时,图象与x轴交于两点Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次方程axbxc0a

0的两根.这两点间的距离ABx2x1.

2

② 当0时,图象与x轴只有一个交点;

③ 当0时,图象与x轴没有交点.

1' 当a0时,图象落在x轴的上方,无论x为任何实数,都有y0; 2' 当a0时,图象落在x轴的下方,无论x为任何实数,都有y0. 2. 抛物线yax2bxc的图象与y轴一定相交,交点坐标为(0,c);

3. 二次函数常用解题方法总结:

⑴ 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;

⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶ 根据图象的位置判断二次函数yax2bxc中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax2bxc(a0)本身就是所含字母x的二次函数;下面以a0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

二次函数重难点复习
二次函数的图像和性质重点和难点 第二篇

【二次函数的图像和性质重点和难点】

天延教育数学学科辅导讲义

1

2

3

4

【二次函数的图像和性质重点和难点】

5

《二次函数的图像和性质》教学设计与反思
二次函数的图像和性质重点和难点 第三篇

二次函数的图像和性质教案
二次函数的图像和性质重点和难点 第四篇

教学过程

一、 课堂导入

同学首先在演算本上画出一次函数y=x+1的图像,利用列表、描点、连线的方式,然后使用同样的方法画出y=2x2 的图像,并根据图像谈论他的性质.

二、复习预习

【二次函数的图像和性质重点和难点】

二次函数是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.

三、知识讲解

考点1

形如:y=ax2+bx+c(a、b、c是常数,a≠0)那么y叫做x的二次函数,它常用的三种基本形式。 一般式:y=ax2+bx+c(a≠0)

顶点式:y=a(x-h)2+k(a≠0)

交点式:y=a(x-x1)(x-x2)( a≠0,x1、x2是图象与x轴交点的横坐标)

考点2

二次函数的图象与性质

二次函数y=ax2+bx+c(a≠0)的图象是以(b4acb2b,)为顶点,以直线y=为对称轴的抛物线。 2a2a4a

bb时,y随x的增大而减小;在对称轴的右侧,即当x>2a2a在a>0时,抛物线开口向上,在对称轴的左侧,即x<

时,y随着x的增大而增大。

在a<0时,抛物线开口向下,在对称轴的左侧,即x<>

b时,y随着x的增大而减小。 2ab时,y随着x的增大而增大。在对称轴的右侧,即当x2a

二次函数的图像与性质提高练习
二次函数的图像和性质重点和难点 第五篇

【二次函数的图像和性质重点和难点】

儒洋教育学科教师辅导讲义

2015二次函数的图像和性质教学反思
二次函数的图像和性质重点和难点 第六篇

反思一:二次函数的图像和性质教学反思

我的优点主要包括:

1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点。

我的不足之处表现在:

1、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。

2、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

3、合作学习的有效性不够。学生在a>0的情况下能得到a越大开口越小,a<0的情况下a越小开口越大。但是综合起来学生就困难的多了。这个时候不妨让大家小组讨论完成知识的总结。有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

这是我的一节课,是我对这节课的一个小结,希望对我以后的课堂能提供帮助。

反思二:二次函数的图像和性质教学反思

在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。

本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义.建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程.体验用函数思想去描述、研究变量之间变化规律的意义.

接下来教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。

本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。

但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。

总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。

反思三:二次函数的图像和性质教学反思

这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到二次函数的性质。花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受二次函数性质是困难的。

真正的形成往往来源于真实的自主探究。只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。

首先,要设计适合学生探究的素材。教材对二次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。如果牵强的引出来,不一定是好事。

其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。探究教学是追求教学过程的探究和探究过程的自然和本真。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。追求自然,就要适当放开学生的手、口、脑,例如本文中的“走向”问题,“向上爬”、“向下走”等,如果是讲授注入式,我们就听不到学生真实的声音了。

最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火把的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。真正的知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,如本课例中的“走向”问题,“同向变化”等,这为函数性质的得出做了很好的铺垫。要彻底抛弃“唯书论”“唯师论”,与学生一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。例如本课中,学生老是得不出二次函数性质的内容,其中引导的过程就是充满机智的过程。在教学设计中,要预设多种意外和可能,这样探究真知的过程就会艰辛并顺利展开。这才是一个成功的组织者。

反思四:二次函数的图像和性质教学反思

本节的学习内容是在前面学过二次函数的概念和二次函数y=ax2;y=ax2+h、y=a(x-h)2的图像和性质的基础上,运用图像变换的观点把二次函数y=ax2的图像经过一定的平移变换,而得到二次函数y=a(x-h)2+k(h≠0,k≠0)的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究的。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意“类比”前几节的内容学习,在对比中加强联系和区别,

2015二次函数的应用教学反思
二次函数的图像和性质重点和难点 第七篇

反思一:二次函数的应用教学反思

二次函数的应用是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,它是本章的难点。新的课程标准要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的实际问题,而最大值问题是生活中利用二次函数知识解决最常见、最有实际应用价值的问题,它生活背景丰富,学生比较感兴趣。本节课通过学习求水流的最高点问题,引导学生将实际问题转化为数学模型,利用数学建模的思想去解决和函数有关的应用问题。此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的基础。

由于本节课是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。

不足之处:《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习探讨。在本节课的教学中,教师引导学生较多,没有完全放开让学生自主探究学习,获得新知;学生在数学学习中还是有较强的依赖性,教师要有意培养学生自主学习的能力。

教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。

反思二:二次函数的应用教学反思

本节课的教学目标是:继续经历利用二次函数解决实际最值问题;会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题;发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。

本 节课只有两个例题,第一个例题是有关距离问题,第二个例题是有关利润的问题。原计划本节课用一节课的时间,但是在实际操作过程中,第一个例题就用了一节课 的时间,所以本节课要用两个课时来上。首先是复习了函数的应用,问学生经过前面对二次函数学习,给他们留下最深刻的是什么?学生马上能想到二次函数的最 值,然后引导学生利用二次函数求只值问题应该注意的事项。1、根据实际问题求出函数解析式,求出自变良取值范围;2、把解析式化成配方式,或者把利用公式 来求出函数的顶点坐标。3、检查顶点的横坐标是否在自变量的取值范围内。

举例 有最大值还是最小值,什么时候能取到最大或者最小值?变化例子是否有最大或者最小值,什么时候取到最大或者最小值?这样做一方面巩固了最大值的取法,而且还为距离的最值问题做好铺垫。

例题的教学采取多媒体展示,根据提供的信息化出图形,引导学生观察,求距离可以根据勾股定理列出代数式。代数式是,问题转化为怎样求这个代数式的最小值。学生很自然想到,要使代数式的值最小,也就是被开方数要最小,也就想到转化为配方形式 ;解法二,利用公式求出。

对于第二个例题,引入的时候先回顾有关列利润的一元二次方程问题,经过市场调查,某种商品的进价为为每件6元,专卖店的每日固定成本为150元.当销售价为每件10元时,日均销售量为100件,单价每将低1元,日均销售量增加40件.要使利润500元,销售价应该定多少?

这样做就为利润问题列出函数解析式奠定了基础,主要的难点是从表格中提供的信息,总结出单价每增加一元,日均销售良就减少40瓶。根据这一规律,就不难列出y关于x的函数解析式。

引导学生思考,你认为商家要追求最大利润,销售价格是定的越低越好还是越高越好?让学生再次体会数学与生活的的密切联系和数学的应用价值。

反思三:二次函数的应用教学反思

二次函数是中学数学的重要内容,也是中考的热点。其中考试涉及的主要有考查二次函数的定义、图象与性质及应用等。在九年级的教学中,教师就要立足课堂,瞄准中考,研究中考试题。近年来,二次函数的应用题目不断出现在各地中考题中,特别值得一提的是,有些源自课本中的例题或习题原型和变式。在日常教学时,注重对接,为中考做好铺垫,是我对这节二次函数解决实际问题实践探索课的期待。

二次函数应用题型一般情况下,解题思路不外乎建立平面直角坐标系,标出图象上的点的坐标,求图象解析式,利用图象解析式及性质,来解决最优化等实际问题。一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。结合华师大版教材教学内容,呈现习题27.2第5题,让学生分小组去试验探索解决问题。各小组很快就得出三个特殊点的坐标(0,0)(5,4)(10,0),并求出了抛物线的解析式,当然速度有快有慢,第二问,就是求当x=6时y的值,不少学生纷纷举手示意完成,我很高兴,也没细究每个同学的情况。继续按照预定方案,组织学生活动,开始对一道试题进行探究。

如图,有一个横截面为抛物线的桥洞,桥洞地面宽为8米,桥洞最高处距地面6米。现有一辆卡车,装载集装箱,箱宽3米,车与箱共高4.5米,请您计算一下,车辆能否通过桥洞。

对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手。我反复引导,几次提醒按例题的方法,从函数的图象上进行考虑,但就是没有人响应,探究几乎陷于停顿,让我大感意外,超乎我的想象。好在我尚能应付,便提问素有“小诸葛”之称的小明,你是怎样思考的?小明说,他也知道首先建立平面直角坐标系,但问题是不知道把坐标系原点建在哪里,更不知道卡车是如何穿过桥洞,是靠中间走,还是靠边通过?我一听,才恍然大悟。原来学生的认知和老师想象的不一样,加上生活经验较少,难怪学生会沉默不语。对于坐标系的建立方法,学生面对多种可能的选择,往往束手无策,根本原因就是老师不重视对学生思考水平的研究,导致以老师思维代替学生思维,造成学生思考与实践脱节。这就要求老师要从学生的实际出发,了解学生的学习状况,善于启发和引导,才能较好的达到教学目标。

本节课的设计初衷,原是让学生从具体的生活实践中,感知数学模型,达到从实际问题中抽象出数学模型,并用数学知识解决问题,同时让学生感知和体会一题多变的变式训练,增加对数学解题思想的认识。但在教学时,学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。

当我充满自信准备进行下一问时,有学生说,我还没得出答案呢?我说,你们小组不是展示过了,怎么你还不会呢?他说,我的解析式设y=ax2+bx+c,我代入得不出来,组长设的和我不一样。我告诉他,其实你用一般式同样可以做的很准,只不过速度稍慢一些,这就需要加强运算练习。下课后我一直在思考,学生越是基础差,那些好的方法他们就越难掌握。学起来既吃力有费气,这就需要在平常加强双基训练,每个学生都必须掌握好基本概念和基本技能。

反思四:二次函数的应用教学反思

二次函数的应用是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,它是本章的难点。新的课程标准要求学生能通 过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的实际问题,而最大值问题是生活中利用二次函数知识解决最常见、最 有实际应用价值的问题,它生活背景丰富,学生比较感兴趣。本节课通过学习求水流的最高点问题,引导学生将实际问题转化为数学模型,利用数学建模的思想去解 决和函数有关的应用问题。此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的基础。

由于本节课是 二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨 论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。二次函数应用的教学后,比我预想的效果要好一 些,出现了几个点引人深思:

1、精心设计问题,引发学生思考建立数模

在《二次函数的应用》的教学过程中,复习旧知后,主 要安排了一道例3—水流最高点问题 :人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷水水流的轨迹是抛物线。如果要求水流的最高点P到喷水枪AB所在直线的距离为1m,且水流的着 地点C距离水枪底部B的距离为2.5m,那么,水流的最高点距离地面是多少米? 以此题为契机,培养学生的分析问题、解决问题的能力。本节课重点放在分析问题,将实际问题转化为数学问题,建立数学模型解决问题。所以在教学时,教师应有 意锻炼学生从读题开始,分析题意,搜索与问题有联系的数学知识,运用知识和技能使问题获得解决。在备课中,我发现学生对例题的理解存在困难,采用设计小问 题,铺设小台阶,引导学生探究,突破教学难点,带领学生寻找解决的方法。我设计的问题如下:

(1)读题,检索有用信息;

(2)分析已知,他们讲的是什么含义? 根据题意画出图形;

(3)分析所求,是让我们求什么?将实际问题可转化为什么知识来解决?

(4)如何求二次函数的最大值?

学 生根据老师提出的问题,小组讨论,同学间互相交流与补充,在教师的引领下,发现本题就是转化为求二次函数的最大值问题,逐步将难点突破,帮助学生建立数模 解决问题。学生在动手画图、讨论的基础上找到解决的方法与步骤,先求二次函数的解析式,再求二次函数的最大值。学生在理解题意后画图形,又加深了对题目的 理解,为解决问题奠定了基础,进一步体会运用数形结合的思想方法求解二次函数的问题,将数学思想与方法渗透到整个教学过程中。

2、为学生提供思考的空间,注重一题多解

学 生在建立平面直角坐标系后,根据题意知道 ,对称轴是x=1,A点坐标(0,2),B点坐标(0,0),C点坐标(0,2),确定二次函数解析式时,出现了一个小插曲。学生用一般式确定二次函数解 式后,有同学想用其他的方法求解想法,我马上鼓励学生去寻找新的方法。四班学生思维活跃,有个学生想用两根式求解析式,让这个学生说出自己的思路,其他学 生帮助他进行分析与补充。该同学将A、B、C三点坐标带入两根式求解,发现求得解析式与用一般式求得解析式不同,很疑惑,不知道问题出在哪里?我并没有否 定该同学的方法,而是让其他学生帮助纠正,在大家的分析图形中发现,B点坐标不在抛物线上,不能将其带入。

2014一次函数的图像和性质教学反思
二次函数的图像和性质重点和难点 第八篇

反思一:一次函数的图像和性质教学反思

从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。

学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状。二是两点法画一次函数的图象。三是探究一次函数的图象与 k 、 b 符号的关系。在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究 k 、 b 符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。

本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中 k 、 b 符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照 k 、 b 的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确 k 的符号决定直线的什么位置, b 的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中 k 、 b 的符号的练习,收到了一定的效果。

本节课我在练习的处理上,显得比较薄弱。一是时间安排上有些前松后紧,二是题量、题型不是很全面。感觉练习不到位,学生知识落实情况不是很了解。这一环节,今后还应加强。

反思二:一次函数的图像和性质教学反思

根据教学目标,结合学生心理特点,以及本人的教学经验,这节课主要采用在教师引导下,学生自主发现为主的教学方法。即教师创设问题情景,激发学生思维,引导学生观察、比较、思考并分组展开讨论,使学生作为认知主体参与知识发生的全过程,体验揭示规律,发现真理的乐趣,,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用。在整个探索新知的过程中主要培养学生的合作精神。

本节课教师要向学生说明研究函数的基本方法是由函数表达式画图象,再由图象得出性质,最后反过来由函数性质研究其图象的其他特征。为此,这节课首先从学生已经认知的正比例函数和一次函数的概念出发,得出其定义式,以及两者特殊与一般的关系。然后展示教材中和作业中出现的正比例函数和一次函数的图象,让学生感知一次函数的图象是一条直线,并让学生回忆画一次函数图像的的方法步骤,掌握画图要领后,进而作出猜想。这样可以较好的突破难点。接着,由一次函数(正比例函数)图象的特殊形状,引导学生从图象和列表或表达式中分析:当自变量取值增大时,其函数值的变化情况;图象的分布主要由什么决定,让学生总结归纳其性质。教师要加以强调反比例函数“每个分支”的变化情况,最后教师用由浅入深的变化训练题组,使学生更完整、灵活地理解与掌握一次函数的图象及性质。

这节课的知识容量较大,而且内容较难,为了能更好地帮助学生消化理解该知识,突破难点,为此我准备了多媒体课件。在教学过程中,我采用通过让学生亲自动手、动脑画图及设计若干组“问题串”的方式,通过教师的引导,学生的分组交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但为了赶时间(在画函数图像环节时间有点过),学生的这一活动开展的不充分,个别学生的主动性、积极性没有充分调动起来。这是今后教学中应该注意的问题。

反思三:一次函数的图像和性质教学反思

我今天讲课的课题是一次函数的图像和性质,我们是集体备课后形成的教案,我把目标定位为:

1、理解正比例函数和一次函数的意义。

2、会画一次函数的图像,并结合图像和表达式理解一次函数的性质。

3、能根据已知条件确定一次函数的表达式。

下面对这节课反思如下:

1、上课仍然改不了以前的好多习惯,不放心学生,总想包办代替,自己讲的多,留给学生的时间和空间少。

2、学生展示的少,老师没有放手给学生,没有让学生去经历知识的获取过程。

3、起点过高,把学生的基础估计过高,不能面对的多数学生。没有本着低起点,小步伐,慢节奏的方式方法进行教学。

4、数形结合不够,应该从图像入手让学生经历画图像和观察图像的过程,并且根据图像去解决一些问题。

5、用展台展示不太清晰,没有让学生画在黑板上效果好。

6、教师应该把课堂还给学生,让学生多做多讲。不可以有老师太多的讲解。

7、中考备课要讲究实效,不可以走过场,作秀,那只能是事倍功半。

8、要仔细钻研教材和课标,以及考试说明,备好课。这是上好课的前提。

9、没有注重方法的总结。

总之,还有诸多地方需要改进,我会在今后的教学中加以注意。

2015二次函数y=ax2+bx+c的图象教学反思
二次函数的图像和性质重点和难点 第九篇

反思一:二次函数y=ax2+bx+c的图象教学反思

1.一定要留足时间让学生自己作出二次函数的图象

可能在教学过程中,有些教师会觉得作图象是上一节课的重点,这一节主要是学生观察、分析图象,从而不让学生画图象或者只是简单的画一两个。这种做法看上去好像更加突出了重点、难点,却没有给学生探索与发现的过程,造成学生对于二次函数性质的理解停留在表面,知识迁移相对薄弱,不利于培养学生自主研究二次函数的能力。

2. 相信学生并为学生提供充分展示自己的机会

在归纳二次函数性质的时候,也要充分的相信学生,鼓励学生大胆的用自己的语言进行归纳,因为学生自己的发现远远比老师直接讲解要深刻得多。在教学过程中,要注重为学生提供展示自己聪明才智的机会,这样也利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。

3.注意改进的方面

在让学生归纳二次函数性质的时候,学生可能会归纳得比较片面或者没有找出关键点,教师一定要注意引导学生从多个角度进行考虑,而且要组织学生展开充分的讨论,把大家的观点集中考虑,这样非常有利于训练学生的归纳能力。

反思二:二次函数y=ax2+bx+c的图象教学反思

函数的学习,尤其是二次函数是学生普遍感觉较为抽象难懂的知识。在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外。更重要的是让学生参与到函数图象和性质的探索中去。要利用一切可以利用的材料来帮助学生理解所学的知识。本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象。然后加以口诀的形式,学生普遍能较好的掌握图象的平移规律。

反思三:二次函数y=ax2+bx+c的图象教学反思

课后查看了数学课程标准中对二次函数的要求:

1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

3、会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。

4、会利用二次函数的图象求一元二次方程的近似解。

发现并没有提到用顶点式来求二次函数的解析式,而且在后面的几节课的教学中也没有要求用顶点式来求二次函数的解析式。但是我认为新课标所提出的要求应该是对学生的最低要求,它并不反对教师结合学生的实际对教材的重新处理。并且从教学的反馈来看,加上了这3个练习学生能较好的理解本课的教学目标,同时也能对前面所学的二次函数顶点的知识加深印象。适应学生的最近发展区。何乐而不为。

以上就是中国招生考试网http://www.chinazhaokao.com/带给大家的精彩工作总结资源。想要了解更多《二次函数的图像和性质重点和难点》的朋友可以持续关注中国招生考试网,我们将会为你奉上最全最新鲜的工作总结内容哦! 中国招生考试网,因你而精彩。

相关热词搜索:二次函数图像性质表格 二次函数图像性质总结
1、“二次函数的图像和性质重点和难点”由中国招生考试网网友提供,版权所有,转载请注明出处。
2、欢迎参与中国招生考试网投稿,获积分奖励,兑换精美礼品。
3、"二次函数的图像和性质重点和难点" 地址:http://www.chinazhaokao.com/wendang/gongzuozongjie/746775.html,复制分享给你身边的朋友!
4、文章来源互联网,如有侵权,请及时联系我们,我们将在24小时内处理!