当前位置: 首页 > 实用文档 > 知识 > 光纤最高多少兆

光纤最高多少兆

2016-02-15 10:01:23 成考报名 来源:http://www.chinazhaokao.com 浏览:

导读: 光纤最高多少兆篇一《光纤是怎么回事?多少兆怎么区分?》 ...

欢迎来到中国招生考试网http://www.chinazhaokao.com/成考报名栏目,本文为大家带来《光纤最高多少兆》,希望能帮助到你。

光纤最高多少兆篇一
《光纤是怎么回事?多少兆怎么区分?》

是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。光导纤维由前香港中文大学校长高锟发明。

微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。

在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,光纤被用作长距离的信息传递。

通常光纤与光缆两个名词会被混淆.多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆.光纤外层的保护结构可防止周遭环境对光纤的伤害,如水,火,电击等.光缆分为:光纤,缓冲层及披覆.光纤和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。在多模光纤中,芯的直径是15μm~50μm, 大致与人的头发的粗细相当。而单模光纤芯的直径为8μm~10μm。芯外面包围着一层折射率比芯低的玻璃封套, 以使光纤保持在芯内。再外面的是一层薄的塑料外套,用来保护封套。光纤通常被扎成束,外面有外壳保护。 纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。

[编辑本段]光导纤维的发明和使用

1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。结果使观众们大吃一惊。人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。

人们曾经发现,光能沿着从酒桶中喷出的细酒流传输;人们还发现,光能顺着弯曲的玻璃棒前进。这是为什么呢?难道光线不再直进了吗?这些现象引起了丁达尔的注意,经过他的研究,发现这是全反射的作用,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。表面上看,光好像在水流中弯曲前进。实际上,在弯曲的水流里,光仍沿直线传播,只不过在内表面上发生了多次全反射,光线经过多次全反射向前传播。

后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝——玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。由于这种纤维能够用来传输光线,所以称它为光导纤维。

光导纤维可以用在通信技术里。1979年9月,一条3.3公里的120路光缆通信系统在北京建成,几年后上海、天津、武汉等地也相继铺设了光缆线路,利用光导纤维进行通信。 利用光导纤维进行的通信叫光纤通信。一对金属电话线至多只能同时传送一千多路电话,而根据理论计算,一对细如蛛丝的光导纤维可以同时通一百亿路电话!铺设1000公里的同轴电缆大约需要500吨铜,改用光纤通信只需几公斤石英就可以了。沙石中就含有石英,几乎是取之不尽的。

另外,利用光导纤维制成的内窥镜,可以帮助医生检查胃、食道、十二指肠等的疾病。光导纤维胃镜是由上千根玻璃纤维组成的软管,它有输送光线、传导图像的本领,又有柔软、灵活,可以任意弯曲等优点,可以通过食道插入胃里。光导纤维把胃里的图像传出来,医生就可以窥见胃里的情形,然后根据情况进行诊断和治疗。

[编辑本段]光纤系统的运用

多股光导纤维做成的光缆可用于通信,它的传导性能良好,传输信息容量大,一条通路可同时容纳十亿人通话。可以同时传送千套电视节目,供自由选看。光导纤维内窥镜可导入心

脏和脑室,测量心脏中的血压、血液中氧的饱和度、体温等。用光导纤维连接的激光手术刀已在临床应用,并可用作光敏法治癌。

光导纤维可以把阳光送到各个角落,还可以进行机械加工。计算机、机器人、汽车配电盘等也已成功地用光导纤维传输光源或图像。如与敏感元件组合或利用本身的特性,则可以做成各种传感器,测量压力、流量、温度、位移、光泽和颜色等。在能量传输和信息传输方面也获得广泛的应用。

高分子光导纤维开发之初,仅用于汽车照明灯的控制和装饰。现在主要用于医学、装饰、汽车、船舶等方面,以显示元件为主。在通信和图像传输方面,高分子光导纤维的应用日益增多,工业上用于光导向器、显示盘、标识、开关类照明调节、光学传感器等,同时也用在装饰显示、广告显示。

[编辑本段]光纤的历史

1880-AlexandraGrahamBell发明光束通话传输

1960-电射及光纤之发明

1977-首次实际安装电话光纤网路

1978-FORT在法国首次安装其生产之光纤电

1990-区域网路及其他短距离传输应用之光纤

2000-到屋边光纤=>到桌边光纤

2005 FTTH(Fiber To The Home)光纤直接到家庭

[编辑本段]光纤的分类特征

按材质分,有无机光导纤维和高分子光导纤维,目前在工业上大量应用的是前者。无机光导纤维材料又分为单组分和多组分两类。单组分即石英,主要原料为四氯化硅、三氯氧磷和三溴化硼等。其纯度要求铜、铁、钴、镍、锰、铬、钒等过渡金属离子杂质含量低于10ppb。除此之外,OH-离子要求低于10ppb。石英纤维已被广泛使用。多组分的原料较多,主要有二氧化硅、三氧化二硼、硝酸钠、氧化铊等。这种材料尚未普及。高分子光导纤维是以透明聚合物制得的光导纤维,由纤维芯材和包皮鞘材组成。芯材为高纯度高透光性的聚甲基丙烯酸甲酯或聚苯乙烯抽丝制得的纤维,外层为含氟聚合物或有机硅聚合物等。

光导通信的研究和实用化,与光导纤维的低损耗密切相关。光能的损耗可否大大降低,关键在于材料纯度的提高。玻璃材料中的杂质产生的光吸收,造成了最大的光损耗,其中过渡金属离子特别有害。目前,由于玻璃材料的高纯度化,这些杂质对光导纤维的损耗影响已很小。

石英玻璃光导纤维的优点是损耗低,当光波长为1.0~1.7μm(约14μm附近),损耗只有1dB/km,在1.55μm处最低,只有0.2dB/km。高分子光导纤维的光损耗较高,1982年,日本电信电报公司利用氘化甲基丙烯酸甲酯聚合抽丝作芯材,光损耗率降低到20dB/km。但高分子光导纤维的特点是能制大尺寸,大数值孔径的光导纤维,光源耦合效率高,挠曲性好,微弯曲不影响导光能力,配列、粘接容易,便于使用,成本低廉。但光损耗大,只能短距离应用。光损耗在10~100dB/km的光导纤维,可传输几百米。

光纤主要分以下两大类:

1)传输点模数类

传输点模数类分单模光纤(Single Mode Fiber)和多模光纤(Multi Mode Fiber)。单模光纤的纤芯直径很小, 在给定的工作波长上只能以单一模式传输,传输频带宽,传输容量大。多模光纤是在给定的工作波长上,能以多个模式同时传输的光纤。 与单模光纤相比,多模光纤的传输性能较差。

2)折射率分布类

折射率分布类光纤可分为跳变式光纤和渐变式光纤。跳变式光纤纤芯的折射率和保护层的折射率都是一个常数。 在纤芯和保护层的交界面,折射率呈阶梯型变化。渐变式光纤纤芯的折射率随着半径的增加按一定规律减小, 在纤芯与保护层交界处减小为保护层的折射率。纤芯的折射率的变化近似于抛物线。

[编辑本段]光纤结构及种类

光及其特性:

1.光是一种电磁波

可见光部分波长范围是:390~760nm(毫微米)。大于760nm部分是红外光,小于390nm部分是紫外光。光纤中应用的是:850,1310,1550三种。

2.光的折射,反射和全反射。

因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。

1.光纤结构:

光纤裸纤一般分为三层:中心高折射率玻璃芯(芯径一般为50或62.5μm),中 间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层。

2.数值孔径:

入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同(AT&T CORNING)。

3.光纤的种类:

A.按光在光纤中的传输模式可分为:单摸光纤和多模光纤。

多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

单模光纤(Single-mode Fiber):一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。

多模光纤(Multi-mode Fiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。

B.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。

常规型:光纤生产厂家将光纤传输频率最佳化在单一波长的光上,如1300nm。

色散位移型:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300nm和1550nm。

C.按折射率分布情况分:突变型和渐变型光纤。

突变型:光纤中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。

渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。

4.常用光纤规格:

单模:8/125μm,9/125μm,10/125μm

多模:50/125μm,欧洲标准

62.5/125μm,美国标准

工业,医疗和低速网络:100/140μm,200/230μm

塑料:98/1000μm,用于汽车控制

[编辑本段]光纤的衰减

造成光纤衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。

本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。

弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。

挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。

杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。

不均匀:光纤材料的折射率不均匀造成的损耗。

对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。

[编辑本段]光纤传输优点

直到1960年,美国科学家Maiman发明了世界上第一台激光器后,为光通讯提供了良好的光源。随后二十多年,人们对光传输介质进行了攻关,终于制成了低损耗光纤,从而奠定了光通讯的基石。从此,光通讯进入了飞速发展的阶段。

光纤传输有许多突出的优点:

1。频带宽

频带的宽窄代表传输容量的大小。载波的频率越高,可以传输信号的频带宽度就越大。在VHF频段,载波频率为48.5MHz~300Mhz。带宽约250MHz,只能传输27套电视和几十套调频广播。可见光的频率达100000GHz,比VHF频段高出一百多万倍。尽管由于光纤对不同频率的光有不同的损耗,使频带宽度受到影响,但在最低损耗区的频带宽度也可达30000GHz。目前单个光源的带宽只占了其中很小的一部分(多模光纤的频带约几百兆赫,好的单模光纤可达10GHz以上),采用先进的相干光通信可以在30000GHz范围内安排2000个光载波,进行波分复用,可以容纳上百万个频道。

2.损耗低

在同轴电缆组成的系统中,最好的电缆在传输800MHz信号时,每公里的损耗都在40dB以上。相比之下,光导纤维的损耗则要小得多,传输1、31um的光,每公里损耗在0.35dB以下若传输1.55um的光,每公里损耗更小,可达0.2dB以下。这就比同轴电缆的功率损耗要小一亿倍,使其能传输的距离要远得多。此外,光纤传输损耗还有两个特点,一是在全部有线电视频道内具有相同的损耗,不需要像电缆干线那样必须引人均衡器进行均衡;二是其损耗几乎不随温度而变,不用担心因环境温度变化而造成干线电平的波动。

3.重量轻

因为光纤非常细,单模光纤芯线直径一般为4um~10um,外径也只有125um,加上防水层、加强筋、护套等,用4~48根光纤组成的光缆直径还不到13mm,比标准同轴电缆的

直径47mm要小得多,加上光纤是玻璃纤维,比重小,使它具有直径小、重量轻的特点,安装十分方便。

4.抗干扰能力强

因为光纤的基本成分是石英,只传光,不导电,不受电磁场的作用,在其中传输的光信号不受电磁场的影响,故光纤传输对电磁干扰、工业干扰有很强的抵御能力。也正因为如此,在光纤中传输的信号不易被窃听,因而利于保密。

5.保真度高

因为光纤传输一般不需要中继放大,不会因为放大引人新的非线性失真。只要激光器的线性好,就可高保真地传输电视信号。实际测试表明,好的调幅光纤系统的载波组合三次差拍比C/CTB在70dB以上,交调指标cM也在60dB以上,远高于一般电缆干线系统的非线性失真指标。

6.工作性能可靠

我们知道,一个系统的可靠性与组成该系统的设备数量有关。设备越多,发生故障的机会越大。因为光纤系统包含的设备数量少(不像电缆系统那样需要几十个放大器),可靠性自然也就高,加上光纤设备的寿命都很长,无故障工作时间达50万~75万小时,其中寿命最短的是光发射机中的激光器,最低寿命也在10万小时以上。故一个设计良好、正确安装调试的光纤系统的工作性能是非常可靠的。

7.成本不断下降

目前,有人提出了新摩尔定律,也叫做光学定律(Optical Law)。该定律指出,光纤传输信息的带宽,每6个月增加1倍,而价格降低1倍。光通信技术的发展,为Internet宽带技术的发展奠定了非常好的基础。这就为大型有线电视系统采用光纤传输方式扫清了最后一个障碍。由于制作光纤的材料(石英)来源十分丰富,随着技术的进步,成本还会进一步降低;而电缆所需的铜原料有限,价格会越来越高。显然,今后光纤传输将占绝对优势,成为建立全省、以至全国有线电视网的最主要传输手段。

结构原理 光导纤维是由两层折射率不同的玻璃组成。内层为光内芯,直径在几微米至几十微米,外层的直径0.1~0.2mm。一般内芯玻璃的折射率比外层玻璃大1%。根据光的折射和全反射原理,当光线射到内芯和外层界面的角度大于产生全反射的临界角时,光线透不过界面,全部反射。这时光线在界面经过无数次的全反射,以锯齿状路线在内芯向前传播,最后传至纤维的另一端。这种光导纤维属皮芯型结构。若内芯玻璃折射率是均匀的,在界面突然变化降低至外层玻璃的折射率,称为阶跃型结构。如内芯玻璃断面折射率从中心向外变化到低折射率的外层玻璃,称为梯度型结构。外层玻璃具有光绝缘性和防止内芯玻璃受污染。另一类光导纤维称自聚焦型结构,它好似由许多微双凸透镜组合而成,迫使入射光线逐渐自动地向中心方向会聚,这类纤维中心的折射率最高,向四周连续均匀地减少,至边缘为最低。

[编辑本段]生产方法

①管棒法:将内芯玻璃棒插入外层玻璃管中(尽量紧密),熔融拉丝;

②双坩埚法:在两个同心铂坩埚内,将内芯和外层玻璃料分别放入内、外坩埚中;

③分子填充法:将微孔石英玻璃棒浸入高折射率的添加剂溶液中,得所需折射率分布的断面结构,再进行拉丝操作,它的工艺比较复杂。在光导纤维通信中还可用内外气相沉积法等,以保证能制造出光损耗率低的光导纤维。光导纤维应用时还要做成光缆,它是由数根光导纤维合并先组成光导纤维芯线,外面被覆塑料皮,再把光导纤维芯线组合成光缆,其中光导纤维的数目可以从几十到几百根,最大的达到4000根

[编辑本段]光网络的结构

光纤最高多少兆篇二
《光纤宽带》

光纤宽带 光纤宽带就是把要传送的数据由电信号转换为光信号进行通讯。

在光纤的两端分别都装有“光猫”进行信号转换。

光纤传输使用的是波分复用,即是把小区里的多个用户的数据分别调制成不同波长的光信号在一根光纤里传输。

光纤是宽带网络中多种传输媒介中最理想的一种,它的特点是传输容量大,传输质量好,损耗小,中继距离长等。

所谓它和ADSL的区别就是,ADSL使用的是频分复用,一人享用一根电话线上网,在这根电话线里还有你的电话机使用的语音信号。而光纤宽带则是通到小区,然后分别通过超5类网线通到各用户,这样上网是上网,打电话是打电话。小区里的人享用一根光纤(足够了)。

尝鲜20兆光纤宽带

本报讯 近日,泗洲别墅的居民成为我县首批尝鲜光纤宽带的市民,体验了一把网速从2M一下子蹿升到20M的快感。不少市民盼望已久的光纤入户将触手可及。

据了解,目前家庭宽带接入速率已由2M取代512K成为普及型速率,而10M的共享型接入速率几乎已经是家庭宽带的极限。此次中国电信正式向家庭用户开放20M独享宽带接入,完全是天翼宽带光纤接入之功。与目前的铜缆宽带相比,光纤宽带的网速可提升20倍甚至更多,后期可平稳升级至千兆速率,而且稳定性更好。

记者在现场体验了一下电信天翼光纤宽带,500M的文件几分钟就可以完成下载。20M带宽独享是什么概念?记者换算了一下,理论上能达到每秒2.5M的下载速率,这将把目前以“K”为单位计算的下载速度整整提升一个层级。 据现场的电信工作人员介绍,除了高速上网以外,电信天翼光纤宽带还能实现在线高清等应用,我县市民离高速“光生活”已经不远了。

全球去年超高速光纤宽带用户超过4000万

2010-06-10 13:00:57 来源: 新华网(广州)

新华网巴黎6月9日电(报道员周楠)据总部设在法国的欧洲著名行业资讯机构IDATE公布的报告,截至2009年底,全球超高速光纤宽带用户接近4100万,到2010年底将达到5200万。

超高速宽带网络的接入方式主要包括光纤接入和电缆接入等,其速度远超过目前流行的利用普通电话线以ADSL技术接入的宽带网络。

IDATE预计,超高速光纤宽带网络市场前景看好。到2014年底,具备接入超高速光纤宽带网络条件的家庭将达3.06亿,其中超过一半用户集中在亚洲国家,18%分布在西欧国家。

目前,日本光纤宽带网络市场发展最好。日本以1710万固定用户数成为拥有光纤宽带用户最多的国家,韩国和美国分别以920万和570万用户数分列第二和第三。

日本最大电信运营商日本电信电话公司以1280万固定高速光纤宽带用户数成为光纤宽带运营商里的领头羊。

光纤投资三年内超1500亿 新增宽带用户超5000万

2010-04-12 07:47:43 来源: 中国经济网(北京)

昨天,记者从工信部了解到,工信部联合发改委、科技部等七大部委发布了《关于推进光纤宽带网络建设的意见》,表示3年内我国在光纤宽带网络建设上的投资将超过1500亿元。

按照《意见》中提到的发展目标,到2011年我国光纤宽带端口将超过8000万,城市用户接入能力平均达到8兆比特每秒以上,农村用户接入能力平均达到2兆比特每秒以上,商业楼宇用户基本实现100兆比特每秒以上的接入能力。而3年内我国用于光纤宽带网络建设投资将超过1500亿元,新增宽带用户将超过5000万。

中新网4月8日电据工信部网站消息,工业和信息化部、国家发展改革委、科技部、财政部、国土资源部、住房和城乡建设部、国家税务总局联合印发了《关于推进光纤宽带网络建设的意见》(以下简称《意见》)。《意见》要求,到2011年,光纤宽带端口超过8000万,城市用户接入能力平均达到8兆比特每秒以上。3年内光纤宽带网络建设投资超过1500亿元,新增宽带用户超过5000万。

《意见》指出,电信企业要按照国家有关规定和技术规范开展光纤宽带网络建设,积极采取多种模式,以需求为导向,以光纤尽量靠近用户为原则,加快光纤宽带接入网络部署。新建区域直接部署光纤宽带网络,已建区域加快光进铜退的网络改造。有条件的商业楼宇和园区直接实施光纤到楼、光纤到办公室,有条件的住宅小区直接实施光纤到楼、光纤到户。优先采用光纤宽带方式加快农村信息基础设施建设,推进光纤到村。加强光纤宽带网络的共建共享和有效利用,积极推进三网融合。同步提升骨干网传输和交换能力,提高骨干网互联互通水平,改善网络服务质量,保障网络与信息安全。

到2011年,光纤宽带端口超过8000万,城市用户接入能力平均达到8兆比特每秒以上,农村用户接入能力平均达到2兆比特每秒以上,商业楼宇用户基本实现100兆比特每秒以上的接入能力。3年内光纤宽带网络建设投资超过1500亿元,新增宽带用户超过5000万。

我国城市网络用户 明年宽带可达8兆

2010-04-10 10:13:00 来源: 千龙网

4月8日,工信部、发改委、科技部、财政部、国土资源部、住建部、国税总局七部委联合发布《关于推进光纤宽带网络建设的意见》。意见表示,三年内光纤宽带网络建设投资超过1500亿元,新增宽带用户超过5000万。《意见》指出,新建区域直接部署光纤宽带网络,已建区域加快光进铜退的网络改造。到2011年,光纤宽带端口超过8000万,城市用户接入能力平均达到8兆比特每秒以上,农村用户接入能力平均达到2兆比特每秒以上,商业楼宇用户基本实现100兆比特每秒以上的接入能力。

业内人士介绍,如果把目前城市中最常见的2兆ADSL铜缆宽带比作两车道的话,那么,8兆的光纤宽带就是八车道,这相当于驾驶员从一条乡村公路转入了高速路,“4兆带宽可以打网络游戏,8兆带宽就可以在网上看高清电视,20兆带宽则可以使绝大多数政府服务在网上进行,普通家庭也可在家使用网上各种应用项目等”。

到明年我国3G投资将达4000亿

本报讯 日前,工业和信息化部等八部门联合下发的文件显示,到2011年,我国3G建设总投资将达到4000亿元,3G基站将超过40万个,3G用户将达到1.5亿户。

(来源:千龙网)

光纤的最高带宽多少?

信息传输分有线与无线两种传输方式。有线传输又有铜回线的电传输方式和光纤的光传输方式,这两种传输方式的最大传输量差别很大,最大传输量小的可供几十人两地同时对话,最大传输量大的可供几十万,甚至几亿人两地同时对话。

各种传输媒体的最大传输量所以有大有小,主要取决于它们各自的最高传输频率,传输频率越高它的最大传输量就越大。各种传输媒体的最高传输频率、最大传输量如下表所示:

传输媒体 最高传输频率(Hz) 能开通的最大电话回路 可供两地对话人数(对人) 架空明线 2.6×105 12×2+3=27 27

对称电缆 2.5×105 60(四线制) 60

小同轴电缆 1.2×107 2700 2700

中同轴电缆 5×107 10500 10500

光纤 1.935×1014※ 600000※ 600000※

※表中数字为一些国家当前运用的光纤传输量,光纤最大传输量比这个数字大得多。

当前运用的单模石英光纤,如G.652C,G.652D,已经基本消除氢损,它们的传输带宽,可以从1260nm到1675nm,共有415nm宽度。一般把这415nm宽度划分成O、E、S、C、L、U六个波段,具体划分方法如下;

初始(O)波段 1260nm-1360nm

扩展(E)波段 1360nm-1460nm

短(S)波段 1460nm-1530nm

常规(C)波段 1530nm-1565nm

长(L)波段 1565nm-1625nm

超常(U)波段 1625nm-1675nm

当前各国光纤通信大都运用在C与L波段,而且仅使用其中的一小部分,还有大部分频率未曾使用。

目前光纤通信提高最大传输量的方法主要有两种:一种是提高传输码速,如:155Mbt/s,622Mbt/s,2.5Gbt/s,10Gbt/s,40Gbt/s,160Gbt/s;另一个是波分复用。所谓波分复用,是将光纤的各个传输波段,按照一定的间隔,如:1.6nm(20GHz)、O.8nm(100GHz)、O.4nm(50GHz)等,分隔成很多较小的频带,这就叫波分,然后把每个频带的中心频率作为载波,用它来承载各个不同码速的光通路。在一根光纤中同时传输多个波长的光通路,这就叫复用。

如果以O.8nm(100GHz)间隔来分割415nm的带宽,可以波分出518个小频带。以每个小频带传输码速为40Gbt/s计算,一根光纤中可以同时传输518×40Gbt/s=20720Gbt/s,如果宽带信息以2Mbt/s口来计算,20720Gbt/s可以分出(20720×103)/2=10360000个2Mbt/s口。若用传输电话回路的多少来衡量最大传输量的话,一个2Mbt/s口可以传输30个电话回路,10360000个2Mbt/s口,可以传输10360000×30=310800000个电话回路。

最近研究试验成功的,英国、日本、美国、丹麦等国可以提供商品的新型光纤,即光子晶体光纤。这种光纤的传输带宽可以从850nm到1675nm,共有825nm宽度。如果按上述O.8nm(100GHz)间隔来分割825nm带宽,能够波分出1031个小频带。若每个频带传输40Gbt/s码速的信息时,光子晶体光纤可以同时传输(103l×40×103)/2=20620000个2Mbt/s口或20620000×30=618600000个电话回路。综上所述,光纤的信息最大传输量为:

1、当前使用的G.652C、G.652D光纤,其信息最大传输量为:

(1)2Mbt/s(宽带)口:可以传输1036万个

(2)电话回路:可以传输3.1亿个

(3)同时供两地对话人数:3.1亿对人

2、光子晶体光纤其信息最大传输量为:

(1)2Mbt/s(宽带)口:可以传输2062万个

(2)电话回路:可以传输6.1亿个

(3)同时供两地对话人数:6.1亿对人

如果提高传输码速或减小波分间隔,信息最大传输量还可以成倍的增加。

光纤最高多少兆篇三
《常用光纤的种类及规格》

常用光纤的种类及规格.txt点的是烟 抽的却是寂寞……不是你不笑,一笑粉就掉!人又不聪明,还学别人秃顶。绑不住我的心就不要说我花心!再牛b的肖邦,也弹不出老子的悲伤!活着的时候开心点,因为我们要死很久。请你以后不要在我面前说英文了,OK?光纤的种类很多,分类方法也是各种各样的。

从材料角度分

按照制造光纤所用的材料分类,有石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤等。

塑料光纤是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有机玻璃)制成的。它的特点是制造成本低廉,相对来说芯径较大,与光源的耦合效率高,耦合进光纤的光功率大,使用方便。但由于损耗较大,带宽较小,这种光纤只适用于短距离低速率通信,如短距离计算机网链路、船舶内通信等。目前通信中普遍使用的是石英系光纤。

按传输模式分

按光在光纤中的传输模式可分为:单模光纤和多模光纤。

多模光纤电缆容许不同光束于一条电缆上传输,由于多模光缆的芯径较大,故可使用较为廉宜的偶合器及接线器,多模光缆的光纤直径为50至100米。

基本上有两种多模光缆,一种是梯度型(graded)另一种是引导型(stepped),对于梯度型(graded)光缆来说,芯的折光系数(refraction index)于芯的外围最小而逐渐向中心点不断增加,从而减少讯号的振模色散,而对引导型(Stepped Inder)光缆来说,折光系数基本上是平均不变,而只有在色层(cladding)表面上才会突然降低引导型(stepped)光缆一般较梯度型(graded)光缆的频宽为低。在网络应用上,最受欢迎的多模光缆为62.5/125米,62.5/125米意指光缆芯径为62.5米而色层(cladding)直径为125米,其他较为普通的为50/125及100/140。

相对于双绞线,多模光纤能够支持较长的传输距离,在10mbps及100mbps的以太网中,多模光纤最长可支持2000米的传输距离,而于1GpS千兆网中,多模光纤最高可支持550米的传输距离。

业界一般认为当传输距离超过295尺,电磁干扰非常严重,或频宽需要超过350MHz,那便应考虑采用多模光纤代替双绞线作为传输载体。

多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,

1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。

多模光纤

多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。

单模光纤

单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这

样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。后来又发现在

1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。这就是说在1.31μm波长处,单模光纤的总色散为零。从光纤的损耗特性来看,1.31μm处正好是光纤的一个低损耗窗口。这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

最佳传输窗口为依据

按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。

常规型:光纤生产长家将光纤传输频率最佳化在单一波长的光上,如1300μm。

色散位移型:光纤生产厂家将光纤传输频率最佳化在两个波长的光上,如:1300μm和1550μm。

我们知道单模光纤没有模式色散所以具有很高的带宽,那么如果让单模光纤工作在1.55μm波长区,不就可以实现高带宽、低损耗传输了吗?但是实际上并不是这么简单。常规单模光纤在1.31μm处的色散比在1.55μm处色散小得多。这种光纤如工作在1.55μm波长区,虽然损耗较低,但由于色散较大,仍会给高速光通信系统造成严重影响。因此,这种光纤仍然不是理想的传输媒介。

为了使光纤较好地工作在1.55μm处,人们设计出一种新的光纤,叫做色散位移光纤(DSF)。这种光纤可以对色散进行补偿,使光纤的零色散点从1.31μm处移到1.55μm附近。这种光纤又称为1.55μm零色散单模光纤,代号为G653。

G653光纤是单信道、超高速传输的极好的传输媒介。现在这种光纤已用于通信干线网,特别是用于海缆通信类的超高速率、长中继距离的光纤通信系统中。

色散位移光纤虽然用于单信道、超高速传输是很理想的传输媒介,但当它用于波分复用多信道传输时,又会由于光纤的非线性效应而对传输的信号产生干扰。特别是在色散为零的波长附近,干扰尤为严重。为此,人们又研制了一种非零色散位移光纤即G655光纤,将光纤的零色散点移到1.55μm 工作区以外的1.60μm以后或在1.53μm以前,但在1.55μm波长区内仍保持很低的色散。这种非零色散位移光纤不仅可用于现在的单信道、超高速传输,而且还可适应于将来用波分复用来扩容,是一种既满足当前需要,又兼顾将来发展的理想传输媒介。

还有一种单模光纤是色散平坦型单模光纤。这种光纤在1.31μm到1.55μm整个波段上的色散都很平坦,接近于零。但是这种光纤的损耗难以降低,体现不出色散降低带来的优点,所以目前尚未进入实用化阶段。

按折射率分布分

按折射率分布情况分:阶跃型和渐变型光纤。

阶跃型:光纤的纤芯折射率高于包层折射率,使得输入的光能在纤芯一包层交界面上不断产生全反射而前进。这种光纤纤芯的折射率是均匀的,包层的折射率稍低一些。光纤中心芯到玻璃包层的折射率是突变的,只有一个台阶,所以称为阶跃型折射率多模光纤,简称阶跃光纤,也称突变光纤。这种光纤的传输模式很多,各种模式的传输路径不一样,经传输后到达终点的时间也不相同,因而产生时延差,使光脉冲受到展宽。所以这种光纤的模间色散高,传输频带不宽,传输速率不能太高,用于通信不够理想,只适用于短途低速通讯,比如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。这是研究开发较早的一种光纤,现在已逐渐被淘汰了。

为了解决阶跃光纤存在的弊端,人们又研制、开发了渐变折射率多模光纤,简称渐变光纤。

渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高次模的光按正弦形式

传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。渐变光纤的包层折射率分布与阶跃光纤一样,为均匀的。渐变光纤的纤芯折射率中心最大,沿纤芯半径方向逐渐减小。由于高次模和低次模的光线分别在不同的折射率层界面上按折射定律产生折射,进入低折射率层中去,因此,光的行进方向与光纤轴方向所形成的角度将逐渐变小。同样的过程不断发生,直至光在某一折射率层产生全反射,使光改变方向,朝中心较高的折射率层行进。这时,光的行进方向与光纤轴方向所构成的角度,在各折射率层中每折射一次,其值就增大一次,最后达到中心折射率最大的地方。在这以后。和上述完全相同的过程不断重复进行,由此实现了光波的传输。可以看出,光在渐变光纤中会自觉地进行调整,从而最终到达目的地,这叫做自聚焦

按工作波长分

按光纤的工作波长分类,有短波长光纤、长波长光纤和超长波长光纤。

常用光纤规格

单模: 8/125μm, 9/125μm, 10/125μm

多模: 50/125μm 欧洲标准 62.5/125μm 美国标准

工业,医疗和低速网络: 100/140μm, 200/230μm

塑料光纤: 98/1000μm 用于汽车控制。

光纤最高多少兆篇四
《多模和单模光纤的极限传输距离》

1.1000Base-SX 及1000Base-LX是什么意思?

短波长光传输1000Base-SX、长波长光传输1000Base-LX

多模光纤可以分为长波激光(称为1000BaseLX)和短波激光(称为1000BaseSX)。

2.千兆位以太网标准

问题:请问多模和单模光纤的极限传输距离是多少?

标准 光纤类型 光纤直径(μm) 最大传输距离

1000base-sx多模 62.5 260m

1000base-sx多模 50 525m

1000base-lx多模 62.5 550m

1000base-lx多模 50 550m

1000base-lx单模 9 3000m

100base-fx

多模:2km

单模:60-70km

超过500m建议用单模!

如要上千兆:

多模 62.5/125 275米以下

50/125 550米以下

单模 没有要求

如只要上百兆:

多模 62.5/125 2000米以下

50/125 2000米以下

单模 没有要求

局域网与广域网的接口标准

局域网接口电缆标准

10base-t:双绞线电缆,一般都使用 rj-45 连接器;最大有效传输距离是距集线器 100m,即使是高质量的5类双绞线也只能达到150m 。其匹配电阻为120欧。

10base5: 粗同轴电缆,采用插入式分接头;采用基带信号;最大支持段长为 500m,最多段数为100。其匹配电阻为75欧。

10base2 :细同轴电缆,接头采用工业标准的bnc 连接器组成 t 型插座;使用范围只有200米,每一段内仅能使用30 台计算机,段数最高为 30。 其匹配电阻为50欧。

100base-tx:使用 5 类以上双绞线,网段长度最长可为100m。

100base-fx :使用一对多模或者单模光纤,使用多模光纤的时候,计算机到集线器之间的距离最大可到2km,使用单模光纤时最大可达10km。

1000base-t:使用 5 类以上双绞线,网段长度最长可为100m。

1000base-f: 使用一对多模或者单模光纤,使用多模光纤的时候,计算机到集线器之间的距离最大可到300-550m(500m),使用单模光纤时最大可达3km。

1000base-lx可以接单、多模光纤; 1000base-sx只能接多模光纤。

1000base-lx用单模光纤传 5公里。

1000base-lx用多模光纤(50um)传 550m。

1000base-lx用多模光纤(62.5um)传 550m。

1000base-sx用多模光纤(50um)传 275m。

1000base-sx用多模光纤(62.5um)传 550m。

100base-fx单模模块用单模光纤传 10-20 公里。

100base-fx多模模块用多模光纤传 2 公里。

光纤接口大全

各种光纤接口类型介绍--光纤接头

FC 圆型带螺纹(配线架上用的最多

)

FC头

ST 卡接式圆型

ST头

SC 卡接式方型(路由器交换机上用的最多

)

SC头

MT-RJ 方型,一头双纤收发一体( 华为8850上有用)

LC头

光纤模块:一般都支持热插拔,GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型。SFP 小型封装GBIC,使用的光纤为LC型

使用的光纤:

单模: L ,波长1310 ;单模长距LH 波长1310,1550

多模:SM,波长850

SX/LH表示可以使用单模或多模光纤

光纤适配器:

光纤适配器(又名法兰盘),也叫光纤连接器,是光纤活动连接器对中连接部件。系列产品包括:FC. SC. ST. LC. MTRJ.广泛应用于光纤配线架(ODF). 光纤通信设备. 仪器等。性能超群,稳定可靠。

产品类型

在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 光纤适配器有SC,FC,ST之分。

SC代表Standard Connector。

ST代表Straight Tip。

FC代表Fiber Connector。

 “/”前面部分表示尾纤的连接器型号。

“SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头。

“LC”接头与SC接头形状相似,较SC接头小一些。

“FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。

连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等,具体的外观参见下图。

“/”后面表明光纤接头截面工艺,即研磨方式。

PC 微球面研磨抛光

APC 呈8度角并做微球面研磨抛光

“PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。

“UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF架内部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。

另外,在广电和早期的CATV中应用较多的是“APC”型号,其尾纤头采用了带倾角的端面,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。由于光纤折射率分布的不均匀会再度返回耦合面,此时虽然能量很小但由于模拟信号是无法彻底消除噪声的,所以相当于在原来的清晰信号上叠加了一个带时延的微弱信号,表现在画面上就是重影。尾纤头带倾角可使反射光不沿原路径返回。一般数字信号一般不存在此问题。

光纤连接器

光纤连接器是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器也影响了光传输系统的可靠性和各项性能。

光纤连接器按传输媒介的不同可分为常见的硅基光纤的单模、多模连接器,还有其它如

以塑胶等为传输媒介的光纤连接器;按连接头结构形式可分为:FC、SC、ST、LC、D4、DIN、MU、MT等等各种形式。其中,ST连接器通常用于布线设备端,如光纤配线架、光纤模块等;而SC和MT连接器通常用于网络设备端。按光纤端面形状分有FC、PC(包括SPC或UPC)和APC;按光纤芯数划分还有单芯和多芯(如MT-RJ)之分。光纤连接器应用广泛,品种繁多。在实际应用过程中, 们一般按照光纤连接器结构的不同来加以区分。以下是一些目前比较常见的光纤连接器:

(1)FC型光纤连接器

这种连接器最早是由日本NTT研制。FC是FERRULE CONNECTOR的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。最早,FC类型的连接器,采用的陶瓷插针的对接端。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。

(2)SC型光纤连接器

这是一种由日本NTT公司开发的光纤连接器。其外壳呈矩形,所采用的插针与耦合套筒的结构尺寸与FC型完全相同,。其中插针的端面多采用PC或APC型研磨方式;紧固方式是采用插拔销闩式,不需旋转。此类连接器价格低廉,插拔操作方便,介入损耗波动小,抗压强度较高,安装密度高。

ST和SC接口是光纤连接器的两种类型,对于10BASE-F连接来说,连接器通常是ST类型的,对于100BASE-FX来说,连接器大部分情况下为SC类型的。ST连接器的芯外露,SC连接器的芯在接头里面。

(3) 双锥型连接器

这类光纤连接器中最有代表性的产品由美国贝尔实验室开发研制,它由两个经精密模压成形的端头呈截头圆锥形的圆筒插头和一个内部装有双锥形塑料套筒的耦合组件组成。

(4) DIN47256型光纤连接器

这是一种由德国开发的连接器。这种连接器采用的插针和耦合套筒的结构尺寸与FC型相同,端面处理采用PC研磨方式。与FC型连接器相比,其结构要复杂一些,内部金属结构中有控制压力的弹簧,可以避免因插接压力过大而损伤端面。另外,这种连接器的机械精度较高,因而介入损耗值较小。

(5) MT-RJ型连接器

MT-RJ起步于NTT开发的MT连接器,带有与RJ-45型LAN电连接器相同的闩锁机构,通过安装于小型套管两侧的导向销对准光纤,为便于与光收发信机相连,连接器端面光纤为双芯(间隔0.75MM)排列设计,是主要用于数据传输的下一代高密度光纤连接器。

(6) LC型连接器

LC型连接器是著名BELL(贝尔)研究所研究开发出来的,采用操作方便的模块化插孔(RJ)闩锁机理制成。其所采用的插针和套筒的尺寸是普通SC、FC等所用尺寸的一半,为

1.25MM。这样可以提高光纤配线架中光纤连接器的密度。目前,在单模SFF方面,LC类型的连接器实际已经占据了主导地位,在多模方面的应用也增长迅速。

(7) MU型连接器

MU(MINIATURE UNIT COUPLING)连接器是以目前使用最多的SC型连接器为基础,由NTT研制开发出来的世界上最小的单芯光纤连接器,。该连接器采用1.25MM直径的套管和自保持机构,其优势在于能实现高密度安装。利用MU的L.25MM直径的套管,NTT已经开发了MU连接器系列。它们有用于光缆连接的插座型连接器(MU-A系列);具有自保持机构的底板连接器(MU-B系列)以及用于连接LD/PD模块与插头的简化插座(MU-SR系列)等。随着光

光纤最高多少兆篇五
《光纤上网速度如何计算》

光纤上网速度如何计算

作者:admin 发布于:2011-08-08 13:49 文字:【大】【中】

【小】

光纤上网速度如何计算

首先要明白一个概念不论光纤还是adsl上网的速度,都有两个方面:上传和下载。

同等带宽的光纤和adsl在下载方面的速率在理论上是相同的,跟你了解的一样,计算方法:上网速率=带宽/8.,结果单位是m/s,一般我们看速率是计算多是kb/s,用刚那结果*1024就好了。很多人误以为多少m的光纤上网速率就是多少m/s,这种说法是错误的,带宽和速率之间存在一个换算。在实际上,同样带宽的光纤下载速度会比adsl快,这是因为光纤是双通道的,它的上下行对称并且互不影响,而adsl是单通道的,上传和下载会相互影响。

关于网速的计算

1.计算光纤传输的真实速度

使用光纤连接网络具有传输速度快。衰减少等特点。因此很多公

司的网络出口都使用光纤。一般网络服务商声称光纤的速度为“ 5M”,那么他的下载真实速度是多少那?我们来计算一下,一般的情况下,“5M”实际上就是5000Kbit/s(按千进位计算)这就存在一个换算的问题。Byte和bit是不同的。1Byte=8bit.而我们常说的下载速度都指的是Byte/s 因此电信所说的“5M”经过还换算后就成为了

(5000/8)KByte/s=625KByte/s这样我们平时下载速度最高就是625KByte/s常常表示625KB/S

在实际的情况中。理论值最高为625KB/S。那么还要排除网络损耗以及线路衰减等原因因此真正的下载速度可能还不到600KB/S 不过只要是550KB/S以上都算正常

2.计算ADSL的真实速度ADSL是大家经常使用的上网方式。那么电信和网通声称的“512K”ADSL下载速度是多少那?

换算方法为512Kbit/s=(512/8)KByte/s=64KByte/s,考虑线路等损耗实际的下载速度在50KB/S以上就算正常了 那么“1MB”那?大家算算吧答案是125KByte/s

3.计算内网的传输速度

经常有人抱怨内网的传输的数度慢那么真实情况下的

10/100MBPS网卡的速度应该有多块那?网卡的100Mbps同样是以bit/s来定义的 所以100Mb/S=

100000KByte/s=(100000/8)KByte/s=12500KByte/s 在理论上1秒钟可以传输12.5MB的速据考虑到干扰的因素每秒传输只

要超过10MB就是正常了 现在出现了1000Mbps的网卡那么速度就是100MB/S

特别提示:

(1)关于bit(比特)/second(秒)与Byte(字节)/s(秒)的换算说明:线路单位是bps,表示bit(比特)/second(秒),注意是小写字母b;用户在网上下载时显示的速率单位往往是Byte(字节)/s(秒),注意是大写字母B。字节和比特之间的关系为1Byte=8Bits;再加上IP包头、HTTP包头等因网络传输协议增加的传输量,显示1KByte/s下载速率时,线路实际传输速率约10kbps。例如:下载显示是

50KByte/s时,实际已经达到了500Kbps的速度。切记注意单位!!!

(2)用户申请的宽带业务速率指技术上所能达到的最大理论速率值,用户上网时还受到用户电脑软硬件的配置、所浏览网站的位置、对端网站带宽等情况的影响,故用户上网时的速率通常低于理论速率值。

(3)理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即

2048Kb/s),实际速率大约为103--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。4M(即4Mb/s)的宽带理论速率是:512KB/s,实际速率大约为200---440kB/s。

宽带网速计算方法

基础知识

在计算机科学中,bit是表示信息的最小单位,叫做二进制位;一般用0和1表示。Byte叫做字节,由8个位(8bit)组成一个字节(1Byte),用于表示计算机中的一个字符。bit与Byte之间可以进行换算,其换算关系为:1Byte=8bit(或简写为:1B=8b);在实际应用中一般用简称,即1bit简写为1b(注意是小写英文字母b),1Byte简写为1B(注意是大写英文字母B)。

在计算机网络或者是网络运营商中,一般,宽带速率的单位用bps(或b/s)表示;bps表示比特每秒即表示每秒钟传输多少位信息,是bit per second的缩写。在实际所说的1M带宽的意思是1Mbps(是兆比特每秒Mbps不是兆字节每秒MBps)。

建议用户记住以下换算公式:

1B=8b 1B/s=8b/s(或1Bps=8bps)

1KB=1024B 1KB/s=1024B/s

1MB=1024KB 1MB/s=1024KB/s

规范提示:实际书写规范中B应表示Byte(字节),b应表示bit(比特),但在平时的实际书写中有的把bit和Byte都混写为b ,如把Mb/s和MB/s都混写为Mb/s,导致人们在实际计算中因单位的混淆而出错。切记注意!!!

实例: 在我们实际上网应用中,下载软件时常常看到诸如下载速度显示为128KBps(KB/s),103KB/s等等宽带速率大小字样,因为ISP提供的线路带宽使用的单位是比特,而一般下载软件显示的是字节(1字节=8比特),所以要通过换算,才能得实际值。然而我们可以按照换算公式换算一下:

128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即

128KB/s=1Mb/s。

(责任编辑:admin)

光纤最高多少兆篇六
《光纤传输的真实速度》

1.计算光纤传输的真实速度

使用光纤连接网络具有传输速度快。衰减少等特点。因此很多公司的网络出口都使用光纤。

一般网络服务商声称光纤的速度为“5M”,那么他的下载真实速度是多少那?我们来计算一下,一般的情况下,“5M”实际上就是5000Kbit/s(按千进位计算)这就存在一个换算的问题。Byte和bit是不同的。1Byte=8bit.而我们常说的下载速度都指的是Byte/s 因此电信所说的“5M”经过还换算后就成为了(5000/8)KByte/s=625KByte/s这样我们平时下载速度最高就是625KByte/s常常表示625KB/S

在实际的情况中。理论值最高为625KB/S。那么还要排除网络损耗以及线路衰减等原因 因此真正的下载速度可能还不到600KB/S 不过只要是550KB/S以上都算正常

2.计算ADSL的真实速度ADSL是大家经常使用的上网方式。那么电信和网通声称的“512K”ADSL下载速度是多少那?

换算方法为512Kbit/s=(512/8)KByte/s=64KByte/s,考虑线路等损耗 实际的下载速度在50KB/S以上就算正常了 那么“1MB”那?大家算算吧 答案是125KByte/s

3.计算内网的传输速度

经常有人抱怨内网的传输的数度慢 那么真实情况下的10/100MBPS网卡的速度应该有多块那?

网卡的100Mbps同样是以bit/s来定义的 所以100Mb/S=

100000KByte/s=(100000/8)KByte/s=12500KByte/s

在理论上1秒钟可以传输12.5MB的速据 考虑到干扰的因素每秒传输只要超过10MB就是正常了 现在出现了1000Mbps的网卡那么速度就是100MB/S 特别提示:

(1)关于bit(比特)/second(秒)与Byte(字节)/s(秒)的换算说明:线路单位是bps,表示bit(比特)/second(秒),

注意是小写字母b;用户在网上下载时显示的速率单位往往是Byte(字节)/s(秒),注意是大写字母B。字节和比

特之间的关系为1Byte=8Bits;再加上IP包头、HTTP包头等因网络传输协议增加的传输量,显示1KByte/s下载速率时,

线路实际传输速率约10kbps。例如:下载显示是50KByte/s时,实际已经达到了500Kbps的速度。切记注意单位!!!

(2)用户申请的宽带业务速率指技术上所能达到的最大理论速率值,用户上网时还受到用户电脑软硬件的配臵、

所浏览网站的位臵、对端网站带宽等情况的影响,故用户上网时的速率通常低于理论速率值。

(3)理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为103--200kB/s;

(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,

信号衰减等多因素的影响而造成的)。4M(即4Mb/s)的宽带理论速率是:512KB/s,实际速率大约为200---440kB/s。

宽带网速计算方法

基础知识

在计算机科学中,bit是表示信息的最小单位,叫做二进制位;一般用0和1表示。Byte叫做字节,由8个位

(8bit)组成一个字节(1Byte),用于表示计算机中的一个字符。bit与Byte之间可以进行换算,其换算

关系为:1Byte=8bit(或简写为:1B=8b);在实际应用中一般用简称,即1bit简写为1b(注意是小写英文

字母b),1Byte简写为1B(注意是大写英文字母B)。

在计算机网络或者是网络运营商中,一般,宽带速率的单位用bps(或b/s)表示;bps表示比特每秒即表示

每秒钟传输多少位信息,是bit per second的缩写。在实际所说的1M带宽的意思是1Mbps(是兆比特每秒Mbps不是兆字节每秒MBps)。

建议用户记住以下换算公式:

1B=8b 1B/s=8b/s(或1Bps=8bps)

1KB=1024B 1KB/s=1024B/s

1MB=1024KB 1MB/s=1024KB/s

规范提示:实际书写规范中B应表示Byte(字节),b应表示bit(比特),但在平时的实际书写中有的把bit和Byte都混写为b ,

如把Mb/s和MB/s都混写为Mb/s,导致人们在实际计算中因单位的混淆而出错。切记注意!!!

实例: 在我们实际上网应用中,下载软件时常常看到诸如下载速度显示为128KBps(KB/s),103KB/s等等宽带速率大小字样,

因为ISP提供的线路带宽使用的单位是比特,而一般下载软件显示的是字节(1字节=8比特),所以要通过换算,才能得实际值。

然而我们可以按照换算公式换算一下:

128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即128KB/s=1Mb/s。

案例1: 某用户反映,为什么我的网速和我办的带宽不一样? 我办的是4M 的宽带,可为什么我测试却只有2百多K的网速啊?

是不是电信骗了我?没有给我开4M哟 ?

案例分析:尊敬的用户,这只是误会。这可能有几个你不理解的原因:第一,实际网速单位是Mb/s,不是MB/s,而你所说的2百多K,

其实际是指2百多KB/s(即2百多千字节每秒)不是2百多Kb/s(即2百多千比特每秒),通常情况下都是说简称如250KB/s或250Kb/s说成250K。

第二,宽带4Mb/s=512KB/s并且这只是技术上的最大理论值,而不是所达到的实际值,

一般正常情况下技术上的最大理论值为4Mb/s的宽带实际值可以达200KB/s至440KB/s。因为宽带速率要受到很多因素

(比如用户计算机性能、资源使用情况、网络高峰期、网站服务能力、信号衰耗、线路衰耗、距离远近等)的影响,

所以导至实际值与技术上的最大理论值有偏差。第三,网络运营商提供的宽带速率单位中,"bps"是指"bit per second"。

而实际速度所指的bps是指"Byte per second"。所以要经过换算,而1Byte=8bit,在计算网速的上行速度或下行速度,

都必须将数值除以8即把bit转化为Byte。例如:下行速度(即下载速度)为1Mb/s,其换算成等价值就是128KBps ;

换算方法:1Mbps=1024/8(KBps)=128KBps即128KByte/s 。

案例2: 某用户反映, 我办的是4M 的宽带, 为什么我的网速比通常情况下都慢哟,而且还经常掉线?是不是电信骗了我?

没有给我开4M哟 ?

案例分析:尊敬的用户,这只是误会。导致网速慢和经常掉线,通常情况下有几种可能的原因:第一、计算机感染病毒较严重;

第二:计算机软硬件配臵及性能;第三、上网终端质量、网线质量、线路传输负载;第四、线路接触是否良好、电源电压是否稳定等问题;

第五、外界信号干扰、信号衰减、线路衰耗及线路距离长短;第六、私自或不规范组网;第七,网卡质量不好或没有插好;

第八、安装了多种杀毒软件及防火墙或同时运行过多的程序;第九、通信协议设臵和防火墙的配臵等等原因;对于本案例中,

该用户的情况经查明,该用户网速慢和掉线的原因是:第一、该用户的电脑感染了多种病毒,导致内存被占用,CPU使用率较高,

经常达100%;影响了电脑性能,导致网速慢;第二、该用户办理的是ADSL拨号上网,因不规范的私自组网,导致线路传输负载加重

,影响线路传输流量,造成网速慢并且经常掉线。第三、网线RJ45与HUB的接头接触不良好和电源电压不稳。

宽带上网障碍分析与处理

1、 用户端分析与处理:请用户自己检查和分析您的计算机软硬配臵是否正确、计算机系统是否感染上病毒、线路连接是否中断、

网络设备是否正常、(如是拨号软件上网)是否安装拨号软件、帐号和密码是否输入正确、检查本地连接是否连接好等等方面。

如检查出是用户端自身的问题导致用户不能上网,请用户自己尽可能的去解决,如都不能解决请拨打我们的免费客户

服务热线10000按1号键详细咨询。

2、 局端分析:如检查出不是用户端自身的问题影响上网,请用户拨打我们的免费客户服务热线10000按1号键进行障碍申告

光纤最高多少兆篇七
《OM3光纤知识》

:云端软件平台。

PCCAD2010版安装之后,要注意零件设计模块。一般安装后

这个是调不出来的。

你试一试有问题再说吧

工艺与涂层:

长飞光纤采用等离子体激活化学气相沉积(简称PCVD)工艺制造光纤芯层。同时采用外部气相沉积(简称DVD)工艺制造的合成石英管来形成光纤包层。结合这两种工艺优点,长飞光纤具有折射率真分布控制精确、几何特性优越和衰减低等优点。

长飞光纤采用双层DLPC9紫外固化丙烯酸树脂涂层,具有优越的保护光纤的能力。这种涂层是为要求更严格的紧套光缆设计的,在松套结构里也表现出极卓越的性能,使光缆具有非常优良的抗徽弯性能。在各种环境条件下涂层均易于剥离,剥离后无任何残留物附在裸光纤上。在60℃下,光纤带经过100多天的浸水实验后,仍保持良好的传输性能。DLPC9涂层使光纤具有优越和稳定的动态抗疲劳特性,大大提高了光纤对恶劣环境的适应能力。

产品描述及应用指南:

长飞匹配包层单模光纤:

全面优化了1310nm和1550nm工作窗口,在1310nm窗口的色散最小、在1550nm窗口的衰减最低,满足在1310nm或1550nm单窗口工作,或在1310nm和1550nm双窗口使用的要求。

长飞匹配包层单模光纤具有低衰减、低色散和低偏振模色散等优越特性,能广泛地应用于高速率、长距离传输,例如:长途通信、干线、有线电视和环路馈线等网络。

长飞全贝低水峰单模光纤:

抑制了普通单模光纤在1383nm附近由于氢氧根离子(OHˉ)吸收千万的耗损峰,将工作窗口扩大到1260-1625nm人波段,增加了约100nm的光谱带宽。全贝光纤全面优化了1260-1625nm全波段的衰减和色散特性,并提高了L波段(1566-1625nm)的抗宏弯性能,充分满足了在单根光纤上传输多种高速率业务的需求。

全贝光纤具有很宽的光谱带宽和优越的光学特性,是支持10G以太网、互联网协议(IP)、异步传输模式(ATM)、同步光网络(SONET)等不同应用的城域网和接入网的最佳选择,满足单信道、多信道密集波分复用(DWDM)和稀疏波昨用CWDM)技术的要求。全贝光纤允许使用较为便宜的激光器、复用器、解复用器和其他现有的1310nm设备。

长飞大保实单模光纤(大有效面积非零色散位移单模光纤):

全面优化了1550nm工作窗口的衰减和色散特性,在1550nm窗口衰减最小且有适量的色散充分满足新一代系统的传输要求。

长飞大保实光纤是目前市场上具有最大有效面积的商用光纤,充分满足输出功率掺饵光纤放大器(简称EDFA)和多信道 密集波分复用技术(简称DWDM)的要求,能在没有色散补偿的条件下有效地应用于高速率、长距离、单/多信道传输系统。此光纤具有适量的色散,同时,大功率信号传输时功率分布在大有效面积上降低了功率密度,通过这两个途径有效地抑制了四波混频、自相位调制、调制不稳定性和交叉相位调制等非线性效应,从而满足了DWDM系统的传输要求。 长飞标准多模光纤:

纤芯直径分别50/125чm、62.5/125чm,包层直径为125чm的渐变型多模光纤,此光纤全面优化了850nm和1300nm工作窗口特性,具有最高的带宽和最低的衰减,满足了在850nm和1300nm窗口使用的要求。

长飞50/125чm、62.5/125чm多模光纤低衰减、高带宽等优越特性使其能广泛应用于局域网络通信(LAN)、视频信号传输、音频信号传输、音频信号和数据传输等领域使用激光器(Laser)或二极管(LED)作为光源,特别适用于千兆以太网(IEEE802.32 z)。由于生产所用工艺(PCVD)所具有的折射率分布控制精确,重复性好等优势,长飞50/125чm、62.5/125чm多模光纤是目前市场上同类产品中带宽最高的光纤。

长飞高贝多模光纤:

适用于高速局域网如千兆及以上以太网。PCVD工艺经工艺优化使高贝光纤具有精确的折射率分布曲线,在千兆系统中不会出现普通多模光纤表现出差分模时延(DMD)现象。因此无需采用昂贵的DMD补偿。高贝光纤满足850nm和1310nm单/双窗口使用要求,在千兆系统传输距离(最高达2000米)牌世界依靠水平。高贝光纤包括50/125чm和62.5/125чm两种结构。

高贝光纤优越的光学性能使其适用于高速局域网,同时也地较低速率系统如FDDI、以太网、ATM等,在低速系统中高贝光纤的传输距离超过2000米。高贝光纤可用于各类光源如发光二极管(LED)、850nm垂直腔表面发光器(VCSEL)、780nmCD激光器、1300nm法不里-珀罗激光器等。 长飞超贝多模光纤:

适用于高速局域网如万兆以太网系统,同时也可用于传输速率万兆以下的局域网系统,如FDDI、以太网、光纤通道等。PCVD工艺经工艺优化使超贝光纤具有精确的折射率分布曲线,并消除了多模光纤的中心凹陷现象。超贝光纤满足850nm和1300nm550米以上。超贝光纤为50/125чm结构。

产品标准:

长飞匹配包层单模光纤符合或优于ITU-T推荐的G.652和IEC 60793-2-50 B1型光纤技术规范。

长飞全贝低水峰单模光纤符合或优于ITU-T推荐的G.652(C和D)和IEC 60793-2-50 B1.3型光纤技术规范。

长飞大保实单模光纤符合或优于ITU-T推荐的G.655和IEC 60793-2-50 B4型光纤技术规范。 长飞50/125чm多模光纤符合或优于ITU-T推荐的G.651和IEC 60793-2-10 A1a.1型光纤技术规范。

长飞62.5/125чm多模光纤符合或优于ITU-T推荐的G.651和IEC 60793-2-10 A1b型光纤技术规范。

长飞高贝多模光纤符合或优于ITU-T推荐的G.651和IEC 60793-2-10 A1a.1型或A1b型光纤技术规范。

长飞超贝多模光纤符合或优于TIA/EIA-492AAAC、ISO/IEC 11801 OM3类和IEC 60793-2-10 A1a.2型光纤技术规范。

备注:长飞光纤适用于种类光缆结构,包括室内紧套光缆、松套层绞式光缆、中心管式光缆、骨架式光缆、骨架式光缆和光纤带光缆等。长飞光纤在使用中与其它工艺生产的光纤相容。 支持新标准

针对光纤电缆而建立并得到认可的OM1,OM2,OM3和OS1标准使用户可以轻易地对光缆的型号进行识别和比较。这些标准涉及下列光纤类型:

·OM1 - 标准的62.5微米多模光纤

·OM2 - 标准的50微米多模光纤

·OM3 - 下一代50微米多模光纤

·OS1 - 10微米单模光纤

面向用户特定的光缆应用以及流水线的制造流程,使得BOS光缆产品可以满足以上这些质量标准和新兴的千兆位与万兆位以太网信道的要求。这些要求涉及到表1中千兆位和万兆位以太网的有效传输距离,其中OF-300是指300米的传输距离,OF-500是指500米的传输距离,以此类推。

1

事实上,Belden公司深知,由于采用了先进的制造流程,在制造过程中光纤特性降级现象是不会发生的。由光纤制造商提供的相同质量的光纤见于最终的光缆产品。

当然,BOS光纤电缆也支持许多其他网络应用以及相应的信道距离。例如,对于OM1,OM2,OM3光纤型号,在1300纳米波长下,可以支持100Base-FX(100兆位/秒)超过2000米的传输距离。

 1、分类

光纤按光在其中的传输模式可分为单模和多模。多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。

光纤的工作波长有短波850nm、长波1310nm和1550nm。光纤损耗一般是随波长增加而减小,850nm的损耗一般为2.5dB/km,1.31μm的损耗一般为0.35dB/km,1.55μm的损耗一般为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。由于OHˉ(水峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,这两个范围未能充分利用。

2、多模

多模光纤(Multi Mode Fiber) - 芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。因此,多模光纤传输的距离就比较近,一般只有几公里。如下表,为多模光缆的带宽的比较:

最小模式带宽 (MHz*km)

光纤最高多少兆篇八
《多模和单模光纤的极限传输距离》

2...千兆位以太网标准

标准 光纤类型 光纤直径(μm) 最大传输距离

1000base-sx 多模 62.5 260m

1000base-sx 多模 50 525m

1000base-lx 多模 62.5 550m

1000base-lx 多模 50 550m

1000base-lx 单模 9 3000m

如要上千兆:

多模 62。5/125 275米以下

50/125 550米以下

单模 没有要求

如只要上百兆:

多模 62。5/125 2000米以下

50/125 2000米以下

单模 没有要求

1000Base-SX 及1000Base-LX是什么意思

短波长光传输1000Base-SX、长波长光传输1000Base-LX

多模光纤有可以分为长波激光(称为1000BaseLX)、的短波激光(称为1000BaseSX)

局域网与广域网的接口标准

一、 局域网接口电缆标准

10base-t:双绞线电缆,一般都使用 rj-45 连接器;最大有效传输距离是距集线器 100m,即使是高质量的5类双绞线也只能达到150m 。其匹配电阻为120欧。

10base5: 粗同轴电缆,采用插入式分接头;采用基带信号;最大支持段长为 500m,最多段数为100。其匹配电阻为75欧。

10base2 :细同轴电缆,接头采用工业标准的bnc 连接器组成 t 型插座;使用范围只有200米,每一段内仅能使用30 台计算机,段数最高为 30。 其匹配电阻为50欧。

100base-tx:使用 5 类以上双绞线,网段长度最长可为100m。

100base-fx :使用一对多模或者单模光纤,使用多模光纤的时候,计算机到集线器之间的距离最大可到2km,使用单模光纤时最大可达10km。

1000base-t:使用 5 类以上双绞线,网段长度最长可为100m。

1000base-f: 使用一对多模或者单模光纤,使用多模光纤的时候,计算机到集线器之间的距离最大可到300-550m(500m),使用单模光纤时最大可达3km。

1000base-lx可以接单、多模光纤; 1000base-sx只能接多模光纤。

1000base-lx用单模光纤传 5公里

1000base-lx用多模光纤(50um)传 550m

1000base-lx用多模光纤(62.5um)传 550m

1000base-sx用多模光纤(50um)传 275m

1000base-sx用多模光纤(62.5um)传 550m

100base-fx单模模块用单模光纤传 10-20 公里

100base-fx多模模块用多模光纤传 2 公里

光纤接口大全

各种光纤接口类型介绍

光纤接头

FC 圆型带螺纹(配线架上用的最多)

FC头

ST 卡接式圆型

ST头

SC 卡接式方型(路由器交换机上用的最多)

SC头

PC 微球面研磨抛光

APC 呈8度角并做微球面研磨抛光

MT-RJ 方型,一头双纤收发一体( 华为8850上有用)

LC头

光纤模块:一般都支持热插拔,

GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型

SFP 小型封装GBIC,使用的光纤为LC型

使用的光纤:

单模: L ,波长1310 单模长距LH 波长1310,1550

多模:SM 波长850

SX/LH表示可以使用单模或多模光纤

在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下

 “/”前面部分表示尾纤的连接器型号

“SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头

“LC”接头与SC接头形状相似,较SC接头小一些。

“FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。

 连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等,具体的外观参见下图

/”后面表明光纤接头截面工艺,即研磨方式。

“PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。

“UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF架内部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。

 另外,在广电和早期的CATV中应用较多的是“APC”型号,其尾纤头采用了带倾角的端面,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。由于光纤折射率分布的不均匀会再度返回耦合面,此时虽然能量很小但由于模拟信号是无法彻底消除噪声的,所以相当于在原来的清晰信号上叠加了一个带时延的微弱信号,表现在画面上就是重影。尾纤头带倾角可使反射光不沿原路径返回。一般数字信号一般不存在此问题

光纤连接器

 光纤连接器是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器也影响了光传输系统的可靠性和各项性能。

光纤连接器按传输媒介的不同可分为常见的硅基光纤的单模、多模连接器,还有其它如以塑胶等为传输媒介的光纤连接器;按连接头结构形式可分为:FC、SC、ST、LC、D4、DIN、MU、MT等等各种形式。其中,ST连接器通常用于布线设备端,如光纤配线架、光纤模块等;而

SC和MT连接器通常用于网络设备端。按光纤端面形状分有FC、PC(包括SPC或UPC)和APC;按光纤芯数划分还有单芯和多芯(如MT-RJ)之分。光纤连接器应用广泛,品种繁多。在实际应用过程中,我们一般按照光纤连接器结构的不同来加以区分。以下是一些目前比较常见的光纤连接器:

(1)FC型光纤连接器

这种连接器最早是由日本NTT研制。FC是Ferrule Connector的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。最早,FC类型的连接器,采用的陶瓷插针的对接端媸瞧矫娼哟シ绞剑‵C)。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。

(2)SC型光纤连接器

这是一种由日本NTT公司开发的光纤连接器。其外壳呈矩形,所采用的插针与耦合套筒的结构尺寸与FC型完全相同,。其中插针的端面多采用PC或APC型研磨方式;紧固方式是采用插拔销闩式,不需旋转。此类连接器价格低廉,插拔操作方便,介入损耗波动小,抗压强度较高,安装密度高。

ST和SC接口是光纤连接器的两种类型,对于10Base-F连接来说,连接器通常是ST类型的,对于100Base-FX来说,连接器大部分情况下为SC类型的。ST连接器的芯外露,SC连接器的芯在接头里面。

(3) 双锥型连接器(Biconic Connector)

这类光纤连接器中最有代表性的产品由美国贝尔实验室开发研制,它由两个经精密模压成形的端头呈截头圆锥形的圆筒插头和一个内部装有双锥形塑料套筒的耦合组件组成。

(4) DIN47256型光纤连接器

这是一种由德国开发的连接器。这种连接器采用的插针和耦合套筒的结构尺寸与FC型相同,端面处理采用PC研磨方式。与FC型连接器相比,其结构要复杂一些,内部金属结构中有控制压力的弹簧,可以避免因插接压力过大而损伤端面。另外,这种连接器的机械精度较高,因而介入损耗值较小。

(5) MT-RJ型连接器

MT-RJ起步于NTT开发的MT连接器,带有与RJ-45型LAN电连接器相同的闩锁机构,通过安装于小型套管两侧的导向销对准光纤,为便于与光收发信机相连,连接器端面光纤为双芯(间隔0.75mm)排列设计,是主要用于数据传输的下一代高密度光纤连接器。

(6) LC型连接器

LC型连接器是著名Bell(贝尔)研究所研究开发出来的,采用操作方便的模块化插孔(RJ)闩锁机理制成。其所采用的插针和套筒的尺寸是普通SC、FC等所用尺寸的一半,为1.25mm。这样可以提高光纤配线架中光纤连接器的密度。目前,在单模SFF方面,LC类型的连接器实际已经占据了主导地位,在多模方面的应用也增长迅速。

(7) MU型连接器

MU(Miniature unit Coupling)连接器是以目前使用最多的SC型连接器为基础,由NTT研制开发出来的世界上最小的单芯光纤连接器,。该连接器采用1.25mm直径的套管和自保持机构,其优势在于能实现高密度安装。利用MU的l.25mm直径的套管,NTT已经开发了MU连接器系列。它们有用于光缆连接的插座型连接器(MU-A系列);具有自保持机构的底板连接器(MU-B系列)以及用于连接LD/PD模块与插头的简化插座(MU-SR系列)等。随着

以上就是中国招生考试网http://www.chinazhaokao.com/带给大家不一样的精彩成考报名。想要了解更多《光纤最高多少兆》的朋友可以持续关注中国招生考试网,我们将会为你奉上最全最新鲜的成考报名内容哦! 中国招生考试网,因你而精彩。

相关热词搜索:光纤宽带最高多少兆 光纤 光纤最高速度

最新推荐成考报名

更多
1、“光纤最高多少兆”由中国招生考试网网友提供,版权所有,转载请注明出处。
2、欢迎参与中国招生考试网投稿,获积分奖励,兑换精美礼品。
3、"光纤最高多少兆" 地址:http://www.chinazhaokao.com/zhishi/231940.html,复制分享给你身边的朋友!
4、文章来源互联网,如有侵权,请及时联系我们,我们将在24小时内处理!